ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Veterinary Immunology and Immunopathology
2018 May 19
Albarrak SM, Waters WR, Stabel JR, Hostetter JM.
PMID: - | DOI: 10.1016/j.vetimm.2018.05.003
In the present study, we evaluated expression of IFN-γ, IL-17, TNF-α, IL-10 and TGF-β by mucosal cells, including WC1+ γδ T cells, in ileal tissues taken from non-infected cattle and cattle naturally infected with Mycobacterium avium subsp paratuberculosis (MAP). Infected cattle were either in the subclinical or clinical stage of infection. We hypothesized that the cytokine profile of the WC1+ γδ T cell subset would be different between subclinical and clinical cattle. Our data indicate a significant increase in the numbers of WC1+ γδ T cells expressing IL-10 in clinical cattle compared to subclinical and non-infected cattle. We observed a significant increase in TGF-β expression by non-WC1+ cells in clinically infected cattle. Expression of IFN-γ, IL-17 and TNF-α in mucosal cells, including the WC1+ γδ T cell subset, was identified in all examined groups. However, our data indicate that the stage of infection did not significantly influence expression of these proinflammatory cytokines. This study demonstrates changes in the cytokine mRNA expression profile of mucosal cells in the ileum, and specifically WC1+ γδ T cells, as cattle progress to the clinical disease. The change is characterized by an increase in expression of anti-inflammatory cytokines.
Poultry Science
2018 Aug 01
Zhang H, Li H, Kidrick J, Wong EA.
PMID: - | DOI: 10.3382/ps/pey343
The uptake of glucose is mediated mainly by the sodium-glucose cotransporter, SGLT1. Previous studies using quantitative PCR showed that SGLT1 mRNA was induced in the yolk sac and in the small intestine prior to hatch. However, PCR analysis did not allow for the localization of cells expressing SGLT1 mRNA. The objective of this study was to use in situ hybridization to identify cells in the yolk sac and small intestine that expressed SGLT1 mRNA during the transition from late embryogenesis to early post-hatch. Expression of SGLT1 mRNA in yolk sac epithelial cells was low from embryonic d 11 to 17, peaked at embryonic d 19, and declined at day of hatch. In the small intestine, cells expressing SGLT1 mRNA were present not only along the intestinal villi but also in the crypts. There was greater expression of SGLT1 mRNA in the intestinal epithelial cells that line the villus than in the olfactomedin 4-expressing stem cells located in the crypts. The latter result suggests that stem cells have the ability to import glucose. Expression of SGLT1 mRNA in the intestine increased from embryonic d 19 to day of hatch and then maintained a high level of expression from d 1 to d 7 post-hatch. For both the yolk sac and small intestine, the temporal pattern of SGLT1 mRNA expression detected by in situ hybridization was consistent with the pattern revealed by PCR.
Nucleic Acid Ther.
2018 Aug 22
Donner AJ, Bell TA, Greenlee S, Graham MJ, Crooke RM.
PMID: 30133341 | DOI: 10.1089/nat.2018.0723
To determine if the pharmacokinetics and pharmacodynamics of gapmer antisense oligonucleotides (ASOs), containing phosphorothioate backbones and 2'-O-methoxyethyl RNA modifications (2'-MOE ASOs), can be altered by renal disease, a series of experiments were performed in models of chronic kidney disease (CKD) and acute kidney injury (AKI). In an adenine diet model of CKD, 2'-MOE ASO activity in the whole kidney was preserved and the reduction in target RNA was sustained for 2-4 weeks postdose. Additionally, 2'-MOE ASO distribution within the kidney was altered in mice with CKD, in that ASO delivery to cortical regions with tubular damage was reduced while distribution to the medulla was increased. Finally, the concentration of 2'-MOE ASO in liver of mice with CKD was elevated relative to mice without CKD, indicating a reduction in renal function and ASO excretion can potentially alter the systemic delivery of 2'-MOE ASOs. These data were generally reproduced in an aristolochic acid model of AKI, with the exception that 2'-MOE ASO activity in the whole kidney was slightly reduced with acute injury. The results from these studies have important implications for the development of 2'-MOE ASO therapeutics as both renal and extrarenal 2'-MOE ASO pharmacokinetics and pharmacodynamics may be altered in patients with renal disease. Importantly, the underlying mechanisms that alter 2'-MOE ASO distribution in the context of kidney disease warrant further examination.
Histopathology. 2018 Oct 4.
2018 Oct 04
Sun C, Jia Y, Wang W, Bi R, Wu L, Bai Q, Zhou X.
PMID: 30286249 | DOI: 10.1111/his.13765
Neuroscience. 2018 Dec 26.
2018 Dec 26
Manohar S, Ramchander PV, Salvi R, Seigel GM.
PMID: 30593923 | DOI: 10.1016/j.neuroscience.2018.12.023
Nat Commun. 2018 Dec 18;9(1):5363.
2018 Dec 18
Hancock LA, Hennessy CE, Solomon GM, Dobrinskikh E, Estrella A, Hara N, Hill DB, Kissner WJ, Markovetz MR, Grove Villalon DE, Voss ME, Tearney GJ, Carroll KS, Shi Y, Schwarz MI, Thelin WR, Rowe SM, Yang IV, Evans CM, Schwartz DA.
PMID: 30560893 | DOI: 10.1038/s41467-018-07768-9
J Int J Clin Exp Pathol (2018)
2018 Nov 15
Cui L, Qu C, Liu H.
| DOI: ISSN:1936-2625/IJCEP0085220
Molecular Metabolism (2019)
2019 Jan 24
Pan W, Allison MB, Sabatini P, Rupp A, Adams J, Patterson C, Jones JC, Olson DP, Myers MG.
| DOI: doi:10.1016/j.molmet.2019.01.007
Sci Rep
2019 May 27
Kamejima S, Tatsumi N, Anraku A, Suzuki H, Ohkido I, Yokoo T, Okabe M.
PMID: 31133638 | DOI: 10.1038/s41598-019-44161-y
In acute kidney injury (AKI), the S3 segment of the proximal tubule is particularly damaged, as it is most vulnerable to ischemia. However, this region is also involved in renal tubular regeneration. To deeply understand the mechanism of the repair process after ischemic injury in AKI, we focused on glial cells missing 1 (Gcm1), which is one of the genes expressed in the S3 segment. Gcm1 is essential for the development of the placenta, and Gcm1 knockout (KO) is embryonically lethal. Thus, the function of Gcm1 in the kidney has not been analyzed yet. We analyzed the function of Gcm1 in the kidney by specifically knocking out Gcm1 in the kidney. We created an ischemia-reperfusion injury (IRI) model to observe the repair process after AKI. We found that Gcm1 expression was transiently increased during the recovery phase of IRI. In Gcm1 conditional KO mice, during the recovery phase of IRI, tubular cell proliferation reduced and transforming growth factor-β1 expression was downregulated resulting in a reduction in fibrosis. In vitro, Gcm1 overexpression promoted cell proliferation and upregulated TGF-β1 expression. These findings indicate that Gcm1 is involved in the mechanisms of fibrosis and cell proliferation after ischemic injury of the kidney.
Front Oncol
2020 Apr 21
Zu T, Wen J, Xu L, Li H, Mi J, Li H, Brakebusch C, Fisher DE, Wu X
PMID: 32373541 | DOI: 10.3389/fonc.2020.00624
JCI Insight
2020 May 07
Petrany MJ, Song T, Sadayappan S, Millay DP
PMID: 32310830 | DOI: 10.1172/jci.insight.136095
Sci Rep
2020 Apr 14
Gavini CK, Bonomo R, Mansuy-Aubert V
PMID: 32286429 | DOI: 10.1038/s41598-020-63357-1
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com