ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Virchows Archiv (2015): 1-9.
Hauck F, Oliveira-Silva M, Dreyer JH, Ferreira Perrusi VJ, Arcuri RA, Hassan R, Bonvicino CR, Barros MHM, Niedobitek G.
PMID: 25820374 | DOI: 10.1007/s00428-015-1761-4
Transl Stroke Res. 2015 Jan 13.
Zhang X, Lee SJ, Young MF, Wang MM.
PMID: 25578324
PLoS One.
2016 Aug 04
Damasceno KA, Ferreira E, Estrela-Lima A, Gamba Cde O, Miranda FF, Alves MR, Rocha RM, de Barros AL, Cassali GD.
PMID: 27490467 | DOI: 10.1371/journal.pone.0160419
Versican expression promotes tumor growth by destabilizing focal cell contacts, thus impeding cell adhesion and facilitating cell migration. It not only presents or recruits molecules to the cell surface, but also modulates gene expression levels and coordinates complex signal pathways. Previously, we suggested that the interaction between versican and human epidermal growth factor receptors may be directly associated with tumor aggressiveness. Thus, the expression of EGFR and HER-2 in these neoplasms may contribute to a better understanding of the progression mechanisms in malignant mammary tumors. The purpose of this study was to correlate the gene and protein expressions of EGFR and HER2 by RNA In Situ Hybridization (ISH) and immunohistochemistry (IHC), respectively, and their relationship with the versican expression in carcinomas in mixed tumors and carcinosarcomas of the canine mammary gland. The results revealed that EGFR mRNA expression showed a significant difference between in situ and invasive carcinomatous areas in low and high versican expression groups. Identical results were observed in HER-2 mRNA expression. In immunohistochemistry analysis, neoplasms with low versican expression showed greater EGFR immunostaining in the in situ areas than in invasive areas, even as the group presenting high versican expression displayed greater EGFR and HER-2 staining in in situ areas. Significant EGFR and HER-2 mRNA and protein expressions in in situ carcinomatous sites relative to invasive areas suggest that these molecules play a role during the early stages of tumor progression.
PLoS One
2017 Aug 17
O'Carroll AM, Salih S, Griffiths PR, Bijabhai A, Knepper MA, Lolait SJ.
PMID: 28817612 | DOI: 10.1371/journal.pone.0183094
Apelin binds to the G protein-coupled apelin receptor (APJ; gene name aplnr) to modulate diverse physiological systems including cardiovascular function, and hydromineral and metabolic balance. Recently a second endogenous ligand for APJ, named apela, has been discovered. We confirm that apela activates signal transduction pathways (ERK activation) in cells expressing the cloned rat APJ. Previous studies suggest that exogenous apela is diuretic, attributable wholly or in part to an action on renal APJ. Thus far the cellular distribution of apela in the kidney has not been reported. We have utilized in situ hybridization histochemistry to reveal strong apela labelling in the inner medulla (IM), with lower levels observed in the inner stripe of the outer medulla (ISOM), of rat and mouse kidneys. This contrasts with renal aplnr expression where the converse is apparent, with intense labelling in the ISOM (consistent with vasa recta labelling) and low-moderate hybridization in the IM, in addition to labelling of glomeruli. Apelin is found in sparsely distributed cells amongst more prevalent aplnr-labelled cells in extra-tubular regions of the medulla. This expression profile is supported by RNA-Seq data that shows that apela, but not apelin or aplnr, is highly expressed in microdissected rat kidney tubules. If endogenous tubular apela promotes diuresis in the kidney it could conceivably do this by interacting with APJ in vasculature, or via an unknown receptor in the tubules. The comparative distribution of apela, apelin and aplnr in the rodent kidney lays the foundation for future work on how the renal apelinergic system interacts.
eNeuro
2017 Aug 17
Dunn CJ, Sarkar P, Bailey ER, Farris S, Zhao M, Ward JM, Dudek SM, Saha RN.
PMID: 28817612 | DOI: 10.1371/journal.pone.0183094
Apelin binds to the G protein-coupled apelin receptor (APJ; gene name aplnr) to modulate diverse physiological systems including cardiovascular function, and hydromineral and metabolic balance. Recently a second endogenous ligand for APJ, named apela, has been discovered. We confirm that apela activates signal transduction pathways (ERK activation) in cells expressing the cloned rat APJ. Previous studies suggest that exogenous apela is diuretic, attributable wholly or in part to an action on renal APJ. Thus far the cellular distribution of apela in the kidney has not been reported. We have utilized in situ hybridization histochemistry to reveal strong apela labelling in the inner medulla (IM), with lower levels observed in the inner stripe of the outer medulla (ISOM), of rat and mouse kidneys. This contrasts with renal aplnr expression where the converse is apparent, with intense labelling in the ISOM (consistent with vasa recta labelling) and low-moderate hybridization in the IM, in addition to labelling of glomeruli. Apelin is found in sparsely distributed cells amongst more prevalent aplnr-labelled cells in extra-tubular regions of the medulla. This expression profile is supported by RNA-Seq data that shows that apela, but not apelin or aplnr, is highly expressed in microdissected rat kidney tubules. If endogenous tubular apela promotes diuresis in the kidney it could conceivably do this by interacting with APJ in vasculature, or via an unknown receptor in the tubules. The comparative distribution of apela, apelin and aplnr in the rodent kidney lays the foundation for future work on how the renal apelinergic system interacts.
PLOS ONE
2017 Sep 13
Vange P, Bruland T, Doseth B, Fossmark R, Sousa MML, Beisvag V, Sørdal O, Qvigstad G, Waldum HL, Sandvik AK, Bakke I.
PMID: 28902909 | DOI: 10.1371/journal.pone.0184514
The cytoprotective protein clusterin is often dysregulated during tumorigenesis, and in the stomach, upregulation of clusterin marks emergence of the oxyntic atrophy (loss of acid-producing parietal cells)-associated spasmolytic polypeptide-expressing metaplasia (SPEM). The hormone gastrin is important for normal function and maturation of the gastric oxyntic mucosa and hypergastrinemia might be involved in gastric carcinogenesis. Gastrin induces expression of clusterin in adenocarcinoma cells. In the present study, we examined the expression patterns and gastrin-mediated regulation of clusterin in gastric tissue from: humans; rats treated with proton pump (H+/K+-ATPase) inhibitors and/or a gastrin receptor (CCK2R) antagonist; H+/K+-ATPase β-subunit knockout (H/K-β KO) mice; and Mongolian gerbils infected with Helicobacter pylori and given a CCK2R antagonist. Biological function of secretory clusterin was studied in human gastric cancer cells. Clusterin was highly expressed in neuroendocrine cells in normal oxyntic mucosa of humans and rodents. In response to hypergastrinemia, expression of clusterin increased significantly and its localization shifted to basal groups of proliferative cells in the mucous neck cell-chief cell lineage in all animal models. That shift was partially inhibited by antagonizing the CCK2R in rats and gerbils. The oxyntic mucosa of H/K-β KO mice contained areas with clusterin-positive mucous cells resembling SPEM. In gastric adenocarcinomas, clusterin mRNA expression was higher in diffuse tumors containing signet ring cells compared with diffuse tumors without signet ring cells, and clusterin seemed to be secreted by tumor cells. In gastric cancer cell lines, gastrin increased secretion of clusterin, and both gastrin and secretory clusterin promoted survival after starvation- and chemotherapy-induced stress. Overall, our results indicate that clusterin is overexpressed in hypergastrinemic rodent models of oxyntic preneoplasia and stimulates gastric cancer cell survival.
Prostate.
2018 May 15
Torres A, Alshalalfa M, Davicioni E, Gupta A, Yegnasubramanian S, Wheelan SJ, Epstein JI, De Marzo AM, Lotan TL.
PMID: 29761525 | DOI: 10.1002/pros.23646
Abstract
BACKGROUND:
Rare prostate carcinomas aberrantly express p63 and have an immunophenotype intermediate between basal and luminal cells. Here, we performed gene expression profiling on p63-expressing prostatic carcinomas and compared them to usual-type adenocarcinoma. We identify ETS2 as highly expressed in p63-expressing prostatic carcinomas and benign prostate basal cells, with lower expression in luminal cells and primary usual-type adenocarcinomas.
METHODS:
A total of 8 p63-expressing prostate carcinomas at radical prostatectomy were compared to 358 usual-type adenocarcinomas by gene expression profiling performed on formalin fixed paraffin embedded tumor tissue using Affymetrix 1.0 ST microarrays. Correlation between differentially expressed genes and TP63 expression was performed in 5239 prostate adenocarcinomas available in the Decipher GRID. For validation, ETS2 in situ hybridization was performed on 19 p63-expressing prostate carcinomas and 30 usual-type adenocarcinomas arrayed on tissue microarrays (TMA).
RESULTS:
By gene expression, p63-expressing prostate carcinomas showed low cell cycle activity and low Decipher prognostic scores, but were predicted to have high Gleason grade compared to usual-type adenocarcinomas by gene expression signatures and morphology. Among the genes over-expressed in p63-expressing carcinoma relative to usual-type adenocarcinoma were known p63-regulated genes, along with ETS2, an ETS family member previously implicated as a prostate cancer tumor suppressor gene. Across several cohorts of prostate samples, ETS2 gene expression was correlated with TP63 expression and was significantly higher in benign prostate compared to usual-type adenocarcinoma. By in situ hybridization, ETS2 gene expression was high in benign basal cells, and low to undetectable in benign luminal cells or usual-type adenocarcinoma. In contrast, ETS2 was highly expressed in 95% (18/19) of p63-expressing prostate carcinomas.
CONCLUSIONS:
ETS2 is a predominantly basally-expressed gene in the prostate, with low expression in usual-type adenocarcinoma and high expression in p63-expressing carcinomas. Given this pattern, the significance of ETS2 loss by deletion or mutation in usual-type adenocarcinomas is uncertain.
Endocrinology.
2018 Jul 27
Doyle ME, Fiori JL, Gonzalez Mariscal I, Liu QR, Goodstein E, Yang H, Shin YK, Santa-Cruz Calvo S, Indig FE, Egan JM.
PMID: 30060183 | DOI: 10.1210/en.2018-00534
We and others have reported that taste cells in taste buds express many peptides in common with cells in the gut and islets of Langerhans in the pancreas. Islets and taste bud cells express the hormones glucagon and ghrelin, the same ATP-sensitive potassium channel (KATP) responsible for depolarizing the insulin secreting beta (β) cell during glucose-induced insulin secretion, as well as the propeptide processing enzymes PC1/3 and PC2. Given the common expression of functionally specific proteins in taste buds and islets, it is surprising that no one has investigated whether insulin is synthesized in taste bud cells until now. Using immunofluorescence, we demonstrate the presence of insulin in mouse, rat and human taste bud cells. We further prove that insulin is synthesized in individual taste buds and not taken up from the parenchyma by: detection of the post-processing insulin molecule C-peptide and green fluorescence protein (GFP) in taste cells of both insulin 1- and insulin 2-GFP mice, and the presence of the mouse insulin transcript by in situ hybridization (ISH). In addition to our cytology data we measured the level of insulin transcript by qRT-PCR in the anterior and posterior lingual epithelium. These analyses show insulin is translated in the circumvallate and foliate papillae in the posterior but only insulin transcript was detected in the anterior fungiform papillae of rodent tongue. Thus, some taste cells are insulin synthesizing cells generated from a continually replenished source of precursor cells in adult mammalian lingual epithelium.
Anat Rec (Hoboken).
2018 Oct 12
Hackett TA
PMID: 30315630 | DOI: 10.1002/ar.23907
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co-transmitters, or serve as signals in neuron-glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1 R). In the auditory forebrain, restriction of A1 R-adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1 R-mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1 R transcripts (Adora1), based on co-expression with cell-specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1 R-mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1 R-adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here.
J Comp Neurol. 2018 Dec 6.
2018 Dec 06
Katie Scott M, Yue J, Biesemeier DJ, Lee JW, Fekete DM.
PMID: 30520042 | DOI: 10.1002/cne.24595
Dev Biol.
2019 May 06
Winkler CC, Franco SJ.
PMID: 31071314 | DOI: 10.1016/j.ydbio.2019.04.016
The majority of oligodendrocytes in the neocortex originate from neural progenitors that reside in the dorsal forebrain. We recently showed that Sonic Hedgehog (Shh) signaling in these dorsal progenitors is required to produce normal numbers of neocortical oligodendrocytes during embryonic development. Conditional deletion of the Shh signaling effector, Smo, in dorsal progenitors caused a dramatic reduction in oligodendrocyte numbers in the embryonic neocortex. In the current study, we show that the depleted oligodendrocyte lineage in Smo conditional mutants is able to recover to control numbers over time. This eventual recovery is achieved in part by expansion of the ventrally-derived wild-type lineage that normally makes up a minority of the total oligodendrocyte population. However, we find that the remaining dorsally-derived mutant cells also increase in numbers over time to contribute equally to the recovery of the total population. Additionally, we found that the ways in which the dorsal and ventral sources cooperate to achieve recovery is different for distinct populations of oligodendrocyte-lineage cells. Oligodendrocyte precursor cells (OPCs) in the neocortical white matter recover completely by expansion of the remaining dorsally-derived Smo mutant cells. On the other hand, mature oligodendrocytes in the white and gray matter recover through an equal contribution from dorsal mutant and ventral wild-type lineages. Interestingly, the only population that did not make a full recovery was OPCs in the gray matter. We find that gray matter OPCs are less proliferative in Smo cKO mutants compared to controls, which may explain their inability to fully recover. Our data indicate that certain populations of the dorsal oligodendrocyte lineage are more affected by loss of Shh signaling than others. Furthermore, these studies shed new light on the complex relationship between dorsal and ventral sources of oligodendrocytes in the developing neocortex.
Sci Transl Med
2020 Feb 19
Wang Z1, Jiang C1, He Q1, Matsuda M1, Han Q1, Wang K1, Bang S1, Ding H2, Ko MC2,3, Ji RR4,5,6.
PMID: 32075945 | DOI: 10.1126/scitranslmed.aaw6471
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com