Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (254)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (59) Apply Lgr5 filter
  • Axin2 (23) Apply Axin2 filter
  • TBD (13) Apply TBD filter
  • OLFM4 (11) Apply OLFM4 filter
  • OLFM4 (11) Apply OLFM4 filter
  • SOX2 (9) Apply SOX2 filter
  • Wnt5a (7) Apply Wnt5a filter
  • GLI1 (7) Apply GLI1 filter
  • Rspo3 (6) Apply Rspo3 filter
  • Wnt2b (6) Apply Wnt2b filter
  • Wnt7b (5) Apply Wnt7b filter
  • Sox9 (5) Apply Sox9 filter
  • ASCL2 (5) Apply ASCL2 filter
  • GREM1 (5) Apply GREM1 filter
  • Lgr6 (5) Apply Lgr6 filter
  • Wnt10b (4) Apply Wnt10b filter
  • Wnt4 (4) Apply Wnt4 filter
  • Wnt6 (4) Apply Wnt6 filter
  • BMI1 (4) Apply BMI1 filter
  • Rspo1 (4) Apply Rspo1 filter
  • Hopx (4) Apply Hopx filter
  • SHH (4) Apply SHH filter
  • WNT2 (4) Apply WNT2 filter
  • Dspp (4) Apply Dspp filter
  • Wnt3 (4) Apply Wnt3 filter
  • ASCL2 (4) Apply ASCL2 filter
  • Wnt10a (3) Apply Wnt10a filter
  • Wnt1 (3) Apply Wnt1 filter
  • CLU (3) Apply CLU filter
  • Notch1 (3) Apply Notch1 filter
  • Dkk4 (3) Apply Dkk4 filter
  • Wnt9b (3) Apply Wnt9b filter
  • MKI67 (3) Apply MKI67 filter
  • NOTUM (3) Apply NOTUM filter
  • SMOC2 (3) Apply SMOC2 filter
  • LRIG1 (3) Apply LRIG1 filter
  • Lgr4 (3) Apply Lgr4 filter
  • Pax7 (3) Apply Pax7 filter
  • c-MYC (3) Apply c-MYC filter
  • Dkk3 (2) Apply Dkk3 filter
  • Wnt16 (2) Apply Wnt16 filter
  • Wnt7a (2) Apply Wnt7a filter
  • egfp (2) Apply egfp filter
  • Bmp4 (2) Apply Bmp4 filter
  • CD34 (2) Apply CD34 filter
  • Rspo2 (2) Apply Rspo2 filter
  • Rspo4 (2) Apply Rspo4 filter
  • CTGF (2) Apply CTGF filter
  • Gfra2 (2) Apply Gfra2 filter
  • DCLK1 (2) Apply DCLK1 filter

Product

  • RNAscope Multiplex Fluorescent Assay (44) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (37) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (34) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (28) Apply RNAscope 2.0 Assay filter
  • RNAscope (25) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (12) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (11) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 LS Assay (8) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope HD Duplex Reagent Kit (2) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • Basescope (1) Apply Basescope filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

Research area

  • (-) Remove Stem Cells filter Stem Cells (254)
  • Cancer (40) Apply Cancer filter
  • Neuroscience (27) Apply Neuroscience filter
  • Development (17) Apply Development filter
  • Developmental (17) Apply Developmental filter
  • Inflammation (9) Apply Inflammation filter
  • lncRNA (6) Apply lncRNA filter
  • Aging (3) Apply Aging filter
  • Gastroenterology (2) Apply Gastroenterology filter
  • HIV (2) Apply HIV filter
  • Memory (2) Apply Memory filter
  • Regeneration (2) Apply Regeneration filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Bone (1) Apply Bone filter
  • CGT (1) Apply CGT filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • Cleft Lip (1) Apply Cleft Lip filter
  • Diet (1) Apply Diet filter
  • Exercise (1) Apply Exercise filter
  • gastric corpus epithelium (1) Apply gastric corpus epithelium filter
  • Gastric stromal cells (1) Apply Gastric stromal cells filter
  • Gut microbiome (1) Apply Gut microbiome filter
  • Hair Growth (1) Apply Hair Growth filter
  • Heart (1) Apply Heart filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Kidney (1) Apply Kidney filter
  • Lung (1) Apply Lung filter
  • Mechanotransduction (1) Apply Mechanotransduction filter
  • Metabolism (1) Apply Metabolism filter
  • Mucopolysaccharidosis type II (1) Apply Mucopolysaccharidosis type II filter
  • Muscle Regeneration (1) Apply Muscle Regeneration filter
  • Muscles (1) Apply Muscles filter
  • Neurodevelopment (1) Apply Neurodevelopment filter
  • Ophthalmology (1) Apply Ophthalmology filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Obesity (1) Apply Other: Obesity filter
  • Pain (1) Apply Pain filter
  • Parkinson disease (1) Apply Parkinson disease filter
  • Pharmacology (1) Apply Pharmacology filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Proteasome inhibitor (1) Apply Proteasome inhibitor filter
  • RNAi (1) Apply RNAi filter
  • Satellite glial cells (1) Apply Satellite glial cells filter
  • Schwann cells (1) Apply Schwann cells filter
  • Sepsis (1) Apply Sepsis filter
  • Signalling (1) Apply Signalling filter
  • Skin (1) Apply Skin filter
  • spatial transcriptomics (1) Apply spatial transcriptomics filter
  • Stress (1) Apply Stress filter

Category

  • Publications (254) Apply Publications filter
Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche

Nature communications

2023 May 25

Lin, M;Hartl, K;Heuberger, J;Beccaceci, G;Berger, H;Li, H;Liu, L;Müllerke, S;Conrad, T;Heymann, F;Woehler, A;Tacke, F;Rajewsky, N;Sigal, M;
PMID: 37230989 | DOI: 10.1038/s41467-023-38780-3

The cellular organization of gastrointestinal crypts is orchestrated by different cells of the stromal niche but available in vitro models fail to fully recapitulate the interplay between epithelium and stroma. Here, we establish a colon assembloid system comprising the epithelium and diverse stromal cell subtypes. These assembloids recapitulate the development of mature crypts resembling in vivo cellular diversity and organization, including maintenance of a stem/progenitor cell compartment in the base and their maturation into secretory/absorptive cell types. This process is supported by self-organizing stromal cells around the crypts that resemble in vivo organization, with cell types that support stem cell turnover adjacent to the stem cell compartment. Assembloids that lack BMP receptors either in epithelial or stromal cells fail to undergo proper crypt formation. Our data highlight the crucial role of bidirectional signaling between epithelium and stroma, with BMP as a central determinant of compartmentalization along the crypt axis.
Defining the structure, signals, and cellular elements of the gastric mesenchymal niche

bioRxiv : the preprint server for biology

2023 Feb 24

Manieri, E;Tie, G;Seruggia, D;Madha, S;Maglieri, A;Huang, K;Fujiwara, Y;Zhang, K;Orkin, SH;He, R;McCarthy, N;Shivdasani, RA;
PMID: 36798304 | DOI: 10.1101/2023.02.11.527728

PDGFRA-expressing mesenchyme provides a niche for intestinal stem cells. Corresponding compartments are unknown in the stomach, where corpus and antral glandular epithelia have similar niche dependencies but are structurally distinct from the intestine and from each other. Previous studies considered antrum and corpus as a whole and did not assess niche functions. Using high-resolution imaging and sequencing, we identify regional subpopulations and niche properties of purified mouse corpus and antral PDGFRA + cells. PDGFRA Hi sub-epithelial myofibroblasts are principal sources of BMP ligands in both gastric segments; two molecularly distinct groups distribute asymmetrically along antral glands but together fail to support epithelial organoids in vitro . In contrast, strategically positioned PDGFRA Lo cells that express CD55 enable corpus and antral organoid growth in the absence of other cellular or soluble factors. Our study provides detailed insights into spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for stem cell support.
Sensory nerve niche regulates mesenchymal stem cell homeostasis via FGF/mTOR/autophagy axis

Nature communications

2023 Jan 20

Pei, F;Ma, L;Jing, J;Feng, J;Yuan, Y;Guo, T;Han, X;Ho, TV;Lei, J;He, J;Zhang, M;Chen, JF;Chai, Y;
PMID: 36670126 | DOI: 10.1038/s41467-023-35977-4

Mesenchymal stem cells (MSCs) reside in microenvironments, referred to as niches, which provide structural support and molecular signals. Sensory nerves are niche components in the homeostasis of tissues such as skin, bone marrow and hematopoietic system. However, how the sensory nerve affects the behavior of MSCs remains largely unknown. Here we show that the sensory nerve is vital for mesenchymal tissue homeostasis and maintenance of MSCs in the continuously growing adult mouse incisor. Loss of sensory innervation leads to mesenchymal disorder and a decrease in MSCs. Mechanistically, FGF1 from the sensory nerve directly acts on MSCs by binding to FGFR1 and activates the mTOR/autophagy axis to sustain MSCs. Modulation of mTOR/autophagy restores the MSCs and rescues the mesenchymal tissue disorder of Fgfr1 mutant mice. Collectively, our study provides insights into the role of sensory nerves in the regulation of MSC homeostasis and the mechanism governing it.
Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling

Nature communications

2023 Jan 11

Yun, J;Hansen, S;Morris, O;Madden, DT;Libeu, CP;Kumar, AJ;Wehrfritz, C;Nile, AH;Zhang, Y;Zhou, L;Liang, Y;Modrusan, Z;Chen, MB;Overall, CC;Garfield, D;Campisi, J;Schilling, B;Hannoush, RN;Jasper, H;
PMID: 36631445 | DOI: 10.1038/s41467-022-35487-9

Cellular senescence and the senescence-associated secretory phenotype (SASP) are implicated in aging and age-related disease, and SASP-related inflammation is thought to contribute to tissue dysfunction in aging and diseased animals. However, whether and how SASP factors influence the regenerative capacity of tissues remains unclear. Here, using intestinal organoids as a model of tissue regeneration, we show that SASP factors released by senescent fibroblasts deregulate stem cell activity and differentiation and ultimately impair crypt formation. We identify the secreted N-terminal domain of Ptk7 as a key component of the SASP that activates non-canonical Wnt / Ca2+ signaling through FZD7 in intestinal stem cells (ISCs). Changes in cytosolic [Ca2+] elicited by Ptk7 promote nuclear translocation of YAP and induce expression of YAP/TEAD target genes, impairing symmetry breaking and stem cell differentiation. Our study discovers secreted Ptk7 as a factor released by senescent cells and provides insight into the mechanism by which cellular senescence contributes to tissue dysfunction in aging and disease.
Phenotypic correction of murine mucopolysaccharidosis type II by engraftment of ex vivo lentiviral vector transduced hematopoietic stem and progenitor cells

Human gene therapy

2022 Oct 13

Smith, MC;Belur, LR;Karlen, AD;Erlanson, O;Podetz-Pedersen, KM;McKenzie, J;Detellis, J;Gagnidze, K;Parsons, G;Robinson, N;Labarre, S;Shah, S;Furcich, J;Lund, T;Tsai, HC;Mc Ivor, RS;Bonner, M;
PMID: 36226412 | DOI: 10.1089/hum.2022.141

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X- linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). Absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently the only approved treatment option for MPS II is enzyme replacement therapy (ERT), Elaprase. However, ERT is demanding for the patient and does not ameliorate neurological manifestations of the disease. Using an IDS deficient mouse model that phenocopies the human disease, we evaluated hematopoietic stem and progenitor cells (HSPCs) transduced with a lentiviral vector (LVV) carrying a codon optimized human IDS coding sequence regulated by a ubiquitous MNDU3 promoter (MNDU3-IDS). Mice treated with MNDU3-IDS LVV transduced cells showed supraphysiologic levels of IDS enzyme activity in plasma, peripheral blood mononuclear cells (PBMCs), and in most analyzed tissues. These enzyme levels were sufficient to normalize GAG storage in analyzed tissues. Importantly, IDS levels in the brains of MNDU3-IDS engrafted animals were restored to 10-20% that of wild-type mice, sufficient to normalize GAG content and prevent emergence of cognitive deficit as evaluated by neurobehavioral testing. These results demonstrate the potential effectiveness of ex vivo MNDU3-IDS LVV transduced HSPCs for treatment of MPS II.
Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth

Nature cardiovascular research

2022 May 01

Bernier-Latmani, J;Cisarovsky, C;Mahfoud, S;Ragusa, S;Dupanloup, I;Barras, D;Renevey, F;Nassiri, S;Anderle, P;Squadrito, ML;Siegert, S;Davanture, S;González-Loyola, A;Fournier, N;Luther, SA;Benedito, R;Valet, P;Zhou, B;De Palma, M;Delorenzi, M;Sempoux, C;Petrova, TV;
PMID: 35602406 | DOI: 10.1038/s44161-022-00061-5

Stem and progenitor cells residing in the intestinal crypts drive the majority of colorectal cancers (CRCs), yet vascular contribution to this niche remains largely unexplored. VEGFA is a key driver of physiological and tumor angiogenesis. Accordingly, current anti-angiogenic cancer therapies target the VEGFA pathway. Here we report that in CRC expansion of the stem/progenitor pool in intestinal crypts requires VEGFA-independent growth and remodeling of blood vessels. Epithelial transformation induced expression of the endothelial peptide apelin, directs migration of distant venous endothelial cells towards progenitor niche vessels ensuring optimal perfusion. In the absence of apelin, loss of injury-inducible PROX1+ epithelial progenitors inhibited both incipient and advanced intestinal tumor growth. Our results establish fundamental principles for the reciprocal communication between vasculature and the intestinal progenitor niche and provide a mechanism for resistance to VEGFA-targeting drugs in CRCs.
Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression?

Nature reviews. Gastroenterology & hepatology

2022 Apr 19

Villablanca, EJ;Selin, K;Hedin, CRH;
PMID: 35440774 | DOI: 10.1038/s41575-022-00604-y

Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Epithelial-derived factors induce muscularis mucosa of human induced pluripotent stem cell-derived gastric organoids

Stem cell reports

2022 Feb 22

Uehara, K;Koyanagi-Aoi, M;Koide, T;Itoh, T;Aoi, T;
PMID: 35245440 | DOI: 10.1016/j.stemcr.2022.02.002

Human gastric development has not been well studied. The generation of human pluripotent stem cell-derived gastric organoids (hGOs) comprising gastric marker-expressing epithelium without an apparent smooth muscle (SM) structure has been reported. We modified previously reported protocols to generate hGOs with muscularis mucosa (MM) from hiPSCs. Time course analyses revealed that epithelium development occurred prior to MM formation. Sonic hedgehog (SHH) and TGF-β1 were secreted by the epithelium. HH and TGF-β signal inhibition prevented subepithelial MM formation. A mechanical property of the substrate promoted SM differentiation around hGOs in the presence of TGF-β. TGF-β signaling was shown to influence the HH signaling and mechanical properties. In addition, clinical specimen findings suggested the involvement of TGF-β signaling in MM formation in recovering gastric ulcers. HH and TGF-β signaling from the epithelium to the stroma and the mechanical properties of the subepithelial environment may influence the emergence of MM in human stomach tissue.
Hypoxia Directs Human Extravillous Trophoblast Differentiation in a Hypoxia-Inducible Factor-Dependent Manner.

Am J Pathol.

2017 Feb 03

Wakeland AK, Soncin F, Moretto-Zita M, Chang CW, Horii M, Pizzo D, Nelson KK, Laurent LC, Parast MM.
PMID: 28167044 | DOI: 10.1016/j.ajpath.2016.11.018

Villous cytotrophoblasts are epithelial stem cells of the early human placenta, able to differentiate either into syncytiotrophoblasts in floating chorionic villi or extravillous trophoblasts (EVTs) at the anchoring villi. The signaling pathways regulating differentiation into these two lineages are incompletely understood. The bulk of placental growth and development in the first trimester occurs under low oxygen tension. One major mechanism by which oxygen regulates cellular function is through the hypoxia-inducible factor (HIF), a transcription factor complex stabilized under low oxygen tension to mediate cellular responses, including cell fate decisions. HIF is known to play a role in trophoblast differentiation in rodents; however, its role in human trophoblast differentiation is poorly understood. Using RNA profiling of sorted populations of primary first-trimester trophoblasts, we evaluated the first stage of EVT differentiation, the transition from epidermal growth factor receptor+ villous cytotrophoblasts into human leukocyte antigen-G+ proximal column EVT (pcEVT) and identified hypoxia as a major pcEVT-associated pathway. Using primary cytotrophoblasts, we determined that culture in low oxygen directs differentiation preferentially toward human leukocyte antigen-G+ pcEVT, and that an intact HIF complex is required for this process. Finally, using global RNA profiling, we identified integrin-linked kinase and associated cytoskeletal remodeling and adhesion to be among HIF-dependent pcEVT-associated signaling pathways. Taken together, we propose that oxygen regulates EVT differentiation through HIF-dependent modulation of various cell adhesion and morphology-related pathways.

LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment

Bone research

2022 Mar 16

Li, X;Tian, BM;Deng, DK;Liu, F;Zhou, H;Kong, DQ;Qu, HL;Sun, LJ;He, XT;Chen, FM;
PMID: 35296649 | DOI: 10.1038/s41413-022-00197-x

Periodontal ligament stem cells (PDLSCs) are a key cell type for restoring/regenerating lost/damaged periodontal tissues, including alveolar bone, periodontal ligament and root cementum, the latter of which is important for regaining tooth function. However, PDLSCs residing in an inflammatory environment generally exhibit compromised functions, as demonstrated by an impaired ability to differentiate into cementoblasts, which are responsible for regrowing the cementum. This study investigated the role of mitochondrial function and downstream long noncoding RNAs (lncRNAs) in regulating inflammation-induced changes in the cementogenesis of PDLSCs. We found that the inflammatory cytokine-induced impairment of the cementogenesis of PDLSCs was closely correlated with their mitochondrial function, and lncRNA microarray analysis and gain/loss-of-function studies identified GACAT2 as a regulator of the cellular events involved in inflammation-mediated mitochondrial function and cementogenesis. Subsequently, a comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) and parallel reaction monitoring (PRM) assays revealed that GACAT2 could directly bind to pyruvate kinase M1/2 (PKM1/2), a protein correlated with mitochondrial function. Further functional studies demonstrated that GACAT2 overexpression increased the cellular protein expression of PKM1/2, the PKM2 tetramer and phosphorylated PKM2, which led to enhanced pyruvate kinase (PK) activity and increased translocation of PKM2 into mitochondria. We then found that GACAT2 overexpression could reverse the damage to mitochondrial function and cementoblastic differentiation of PDLSCs induced by inflammation and that this effect could be abolished by PKM1/2 knockdown. Our data indicated that by binding to PKM1/2 proteins, the lncRNA GACAT2 plays a critical role in regulating mitochondrial function and cementogenesis in an inflammatory environment.
Apc-mutant cells act as supercompetitors in intestinal tumour initiation

Nature

2021 Jun 01

van Neerven, SM;de Groot, NE;Nijman, LE;Scicluna, BP;van Driel, MS;Lecca, MC;Warmerdam, DO;Kakkar, V;Moreno, LF;Vieira Braga, FA;Sanches, DR;Ramesh, P;Ten Hoorn, S;Aelvoet, AS;van Boxel, MF;Koens, L;Krawczyk, PM;Koster, J;Dekker, E;Medema, JP;Winton, DJ;Bijlsma, MF;Morrissey, E;Léveillé, N;Vermeulen, L;
PMID: 34079128 | DOI: 10.1038/s41586-021-03558-4

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3β. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.
HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.

Proc Natl Acad Sci U S A.

2016 Nov 02

Chakraborty D, Cui W, Rosario GX, Scott RL, Dhakal P, Renaud SJ, Tachibana M, Rumi MA, Mason CW, Krieg AJ, Soares MJ.
PMID: 27807143 | DOI: 10.1073/pnas.1612626113

The hemochorial placenta develops from the coordinated multilineage differentiation of trophoblast stem (TS) cells. An invasive trophoblast cell lineage remodels uterine spiral arteries, facilitating nutrient flow, failure of which is associated with pathological conditions such as preeclampsia, intrauterine growth restriction, and preterm birth. Hypoxia plays an instructive role in influencing trophoblast cell differentiation and regulating placental organization. Key downstream hypoxia-activated events were delineated using rat TS cells and tested in vivo, using trophoblast-specific lentiviral gene delivery and genome editing. DNA microarray analyses performed on rat TS cells exposed to ambient or low oxygen and pregnant rats exposed to ambient or hypoxic conditions showed up-regulation of genes characteristic of an invasive/vascular remodeling/inflammatory phenotype. Among the shared up-regulated genes was matrix metallopeptidase 12 (MMP12). To explore the functional importance of MMP12 in trophoblast cell-directed spiral artery remodeling, we generated an Mmp12 mutant rat model using transcription activator-like nucleases-mediated genome editing. Homozygous mutant placentation sites showed decreased hypoxia-dependent endovascular trophoblast invasion and impaired trophoblast-directed spiral artery remodeling. A link was established between hypoxia/HIF and MMP12; however, evidence did not support Mmp12 as a direct target of HIF action. Lysine demethylase 3A (KDM3A) was identified as mediator of hypoxia/HIF regulation of Mmp12 Knockdown of KDM3A in rat TS cells inhibited the expression of a subset of the hypoxia-hypoxia inducible factor (HIF)-dependent transcripts, including Mmp12, altered H3K9 methylation status, and decreased hypoxia-induced trophoblast cell invasion in vitro and in vivo. The hypoxia-HIF-KDM3A-MMP12 regulatory circuit is conserved and facilitates placental adaptations to environmental challenges.

Pages

  • « first
  • ‹ previous
  • …
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?