Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (494)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (54) Apply TBD filter
  • Lgr5 (22) Apply Lgr5 filter
  • Axin2 (12) Apply Axin2 filter
  • Sox9 (10) Apply Sox9 filter
  • GLI1 (9) Apply GLI1 filter
  • COL1A1 (8) Apply COL1A1 filter
  • PDGFRA (8) Apply PDGFRA filter
  • Col2a1 (8) Apply Col2a1 filter
  • Ptch1 (7) Apply Ptch1 filter
  • Wnt4 (6) Apply Wnt4 filter
  • Dmp1 (6) Apply Dmp1 filter
  • Wnt5a (6) Apply Wnt5a filter
  • WNT2 (6) Apply WNT2 filter
  • ACTA2 (5) Apply ACTA2 filter
  • Bmp4 (5) Apply Bmp4 filter
  • Sp7 (5) Apply Sp7 filter
  • FOS (5) Apply FOS filter
  • OLFM4 (5) Apply OLFM4 filter
  • SHH (5) Apply SHH filter
  • GJA5 (5) Apply GJA5 filter
  • SOX2 (4) Apply SOX2 filter
  • Rspo1 (4) Apply Rspo1 filter
  • Rspo3 (4) Apply Rspo3 filter
  • GFAP (4) Apply GFAP filter
  • Lgr6 (4) Apply Lgr6 filter
  • Olig2 (4) Apply Olig2 filter
  • Dspp (4) Apply Dspp filter
  • Runx2 (4) Apply Runx2 filter
  • Osr1 (4) Apply Osr1 filter
  • Adamts18 (4) Apply Adamts18 filter
  • Kiss1 (4) Apply Kiss1 filter
  • Dlx5 (4) Apply Dlx5 filter
  • Wnt16 (3) Apply Wnt16 filter
  • Wnt7b (3) Apply Wnt7b filter
  • Fgfr3 (3) Apply Fgfr3 filter
  • egfp (3) Apply egfp filter
  • Bmp5 (3) Apply Bmp5 filter
  • Rspo2 (3) Apply Rspo2 filter
  • CDKN1A (3) Apply CDKN1A filter
  • CDKN2A (3) Apply CDKN2A filter
  • Nrg1 (3) Apply Nrg1 filter
  • EPCAM (3) Apply EPCAM filter
  • EREG (3) Apply EREG filter
  • FGFR1 (3) Apply FGFR1 filter
  • FGFR2 (3) Apply FGFR2 filter
  • GREM1 (3) Apply GREM1 filter
  • HIF1A (3) Apply HIF1A filter
  • Chrdl1 (3) Apply Chrdl1 filter
  • KRT5 (3) Apply KRT5 filter
  • Hopx (3) Apply Hopx filter

Product

  • RNAscope Multiplex Fluorescent Assay (179) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (72) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (49) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (33) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (29) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent v2 (21) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (15) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.0 Assay (9) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (9) Apply RNAscope 2.5 HD Duplex filter
  • TBD (8) Apply TBD filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • Basescope (4) Apply Basescope filter
  • RNAscope HiPlex v2 assay (4) Apply RNAscope HiPlex v2 assay filter
  • BASEscope Assay RED (3) Apply BASEscope Assay RED filter
  • BaseScope Duplex Assay (3) Apply BaseScope Duplex Assay filter
  • miRNAscope (2) Apply miRNAscope filter
  • RNAscope Multiplex fluorescent reagent kit v2 (2) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.5 HD Reagent Kit (1) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter

Research area

  • (-) Remove Development filter Development (494)
  • Neuroscience (103) Apply Neuroscience filter
  • Stem Cells (17) Apply Stem Cells filter
  • Reproduction (14) Apply Reproduction filter
  • Inflammation (13) Apply Inflammation filter
  • Bone (12) Apply Bone filter
  • Stem cell (12) Apply Stem cell filter
  • Heart (10) Apply Heart filter
  • Teeth (8) Apply Teeth filter
  • lncRNA (7) Apply lncRNA filter
  • Kidney (6) Apply Kidney filter
  • Lung (6) Apply Lung filter
  • Regeneration (6) Apply Regeneration filter
  • Reproductive Biology (6) Apply Reproductive Biology filter
  • Metabolism (5) Apply Metabolism filter
  • Cancer (4) Apply Cancer filter
  • Eye (4) Apply Eye filter
  • Sex Differences (4) Apply Sex Differences filter
  • Behavior (3) Apply Behavior filter
  • Fibrosis (3) Apply Fibrosis filter
  • Neurodevelopment (3) Apply Neurodevelopment filter
  • Other: Heart (3) Apply Other: Heart filter
  • Progenitor Cells (3) Apply Progenitor Cells filter
  • Single Cell (3) Apply Single Cell filter
  • Aging (2) Apply Aging filter
  • Cardiac (2) Apply Cardiac filter
  • Cardiology (2) Apply Cardiology filter
  • Cell Biology (2) Apply Cell Biology filter
  • diabetes (2) Apply diabetes filter
  • Ear (2) Apply Ear filter
  • Endocrine (2) Apply Endocrine filter
  • Endocrinology (2) Apply Endocrinology filter
  • Infectious (2) Apply Infectious filter
  • LncRNAs (2) Apply LncRNAs filter
  • Regenerative dentistry (2) Apply Regenerative dentistry filter
  • Schizophrenia (2) Apply Schizophrenia filter
  • Skin (2) Apply Skin filter
  • therapeutics (2) Apply therapeutics filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • Cardio (1) Apply Cardio filter
  • CGT (1) Apply CGT filter
  • Evolution (1) Apply Evolution filter
  • Hearing (1) Apply Hearing filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Methods (1) Apply Other: Methods filter
  • Signalling (1) Apply Signalling filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (494) Apply Publications filter
Arid1a regulates cell cycle exit of transit-amplifying cells by inhibiting the Aurka-Cdk1 axis in mouse incisor

Development (Cambridge, England)

2021 Apr 15

Du, J;Jing, J;Chen, S;Yuan, Y;Feng, J;Ho, TV;Sehgal, P;Xu, J;Jiang, X;Chai, Y;
PMID: 33766930 | DOI: 10.1242/dev.198838

Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.
Reactivation of the Hedgehog pathway in esophageal progenitors turns on an embryonic-like program to initiate columnar metaplasia

Cell stem cell

2021 Apr 14

Vercauteren Drubbel, A;Pirard, S;Kin, S;Dassy, B;Lefort, A;Libert, F;Nomura, S;Beck, B;
PMID: 33882290 | DOI: 10.1016/j.stem.2021.03.019

Columnar metaplasia of the esophagus is the main risk factor for esophageal adenocarcinoma. There is a lack of evidence to demonstrate that esophageal progenitors can be the source of columnar metaplasia. In this study, using transgenic mouse models, lineage tracing, single-cell RNA sequencing, and transcriptomic and epigenetic profiling, we found that the activation of the Hedgehog pathway in esophageal cells modifies their differentiation status in vivo. This process involves an initial step of dedifferentiation into embryonic-like esophageal progenitors. Moreover, a subset of these cells undergoes full squamous-to-columnar conversion and expresses selected intestinal markers. These modifications of cell fate are associated with remodeling of the chromatin and the appearance of Sox9. Using a conditional knockout mouse, we show that Sox9 is required for columnar conversion but not for the step of dedifferentiation. These results provide insight into the mechanisms by which esophageal cells might initiate columnar metaplasia.
Programmed conversion of hypertrophic chondrocytes into osteoblasts and marrow adipocytes within zebrafish bones.

Elife

2019 Feb 20

Giovannone D, Paul S, Schindler S, Arata C, Farmer DT, Patel P, Smeeton J, Crump JG.
PMID: 30785394 | DOI: 10.7554/eLife.42736

Much of the vertebrate skeleton develops from cartilage templates that are progressively remodeled into bone. Lineage tracing studies in mouse suggest that chondrocytes within these templates persist and become osteoblasts, yet the underlying mechanisms of this process and whether chondrocytes can generate other derivatives remain unclear. We find that zebrafish cartilages undergo extensive remodeling and vascularization during juvenile stages to generate fat-filled bones. Growth plate chondrocytes marked by sox10 and col2a1a contribute to osteoblasts, marrow adipocytes, and mesenchymal cells within adult bones. At the edge of the hypertrophic zone, chondrocytes re-enter the cell cycle and express leptin receptor (lepr), suggesting conversion into progenitors. Further, mutation of matrix metalloproteinase 9 (mmp9) results in delayed growth plate remodeling and fewer marrow adipocytes. Our data support Mmp9-dependent growth plate remodeling and conversion of chondrocytes into osteoblasts and marrow adipocytes as conserved features of bony vertebrates.

circSamd4 represses myogenic transcriptional activity of PUR proteins.

Nucleic Acids Res

2020 Jan 25

Pandey PR, Yang JH, Tsitsipatis D, Panda AC, Noh JH, Kim KM, Munk R, Nicholson T, Hanniford D, Argibay D, Yang X, Martindale JL, Chang MW, Jones SW, Hernando E, Sen P, De S, Abdelmohsen K, Gorospe M
PMID: 31980816 | DOI: 10.1093/nar/gkaa035

By interacting with proteins and nucleic acids, the vast family of mammalian circRNAs is proposed to influence many biological processes. Here, RNA sequencing analysis of circRNAs differentially expressed during myogenesis revealed that circSamd4 expression increased robustly in mouse C2C12 myoblasts differentiating into myotubes. Moreover, silencing circSamd4, which is conserved between human and mouse, delayed myogenesis and lowered the expression of myogenic markers in cultured myoblasts from both species. Affinity pulldown followed by mass spectrometry revealed that circSamd4 associated with PURA and PURB, two repressors of myogenesis that inhibit transcription of the myosin heavy chain (MHC) protein family. Supporting the hypothesis that circSamd4 might complex with PUR proteins and thereby prevent their interaction with DNA, silencing circSamd4 enhanced the association of PUR proteins with the Mhc promoter, while overexpressing circSamd4 interfered with the binding of PUR proteins to the Mhc promoter. These effects were abrogated when using a mutant circSamd4 lacking the PUR binding site. Our results indicate that the association of PUR proteins with circSamd4 enhances myogenesis by contributing to the derepression of MHC transcription
Human muscle-derived CLEC14A-positive cells regenerate muscle independent of PAX7

Nat Commun

2019 Dec 18

Marg A, Escobar H, Karaiskos N, Grunwald SA, Metzler E, Kieshauer J, Sauer S, Pasemann D, Malfatti E Mompoint D, Quijano-Roy S, Boltengagen A, Schneider J, Sch�lke M, Kunz S, Carlier R, Birchmeier C, Amthor H Spuler A, Kocks C, Rajewsky N, Spuler S
PMID: 31852888 | DOI: 10.1038/s41467-019-13650-z

Skeletal muscle stem cells, called satellite cells and defined by the transcription factor PAX7, are responsible for postnatal muscle growth, homeostasis and regeneration. Attempts to utilize the regenerative potential of muscle stem cells for therapeutic purposes so far failed. We previously established the existence of human PAX7-positive cell colonies with high regenerative potential. We now identified PAX7-negative human muscle-derived cell colonies also positive for the myogenic markers desmin and MYF5. These include cells from a patient with a homozygous PAX7 c.86-1G?>?A mutation (PAX7null). Single cell and bulk transcriptome analysis show high intra- and inter-donor heterogeneity and reveal the endothelial cell marker CLEC14A to be highly expressed in PAX7null cells. All PAX7-negative cell populations, including PAX7null, form myofibers after transplantation into mice, and regenerate muscle after reinjury. Transplanted PAX7neg cells repopulate the satellite cell niche where they re-express PAX7, or, strikingly, CLEC14A. In conclusion, transplanted human cells do not depend on PAX7 for muscle regeneration.
Wnt signaling preserves progenitor cell multipotency during adipose tissue development

Nature metabolism

2023 Jun 01

Yang Loureiro, Z;Joyce, S;DeSouza, T;Solivan-Rivera, J;Desai, A;Skritakis, P;Yang, Q;Ziegler, R;Zhong, D;Nguyen, TT;MacDougald, OA;Corvera, S;
PMID: 37337125 | DOI: 10.1038/s42255-023-00813-y

Mesenchymal stem/progenitor cells are essential for tissue development and repair throughout life, but how they are maintained under chronic differentiation pressure is not known. Using single-cell transcriptomics of human progenitor cells we find that adipose differentiation stimuli elicit two cellular trajectories: one toward mature adipocytes and another toward a pool of non-differentiated cells that maintain progenitor characteristics. These cells are induced by transient Wnt pathway activation and express numerous extracellular matrix genes and are therefore named structural Wnt-regulated adipose tissue cells. We find that the genetic signature of structural Wnt-regulated adipose tissue cells is present in adult human adipose tissue and adipose tissue developed from human progenitor cells in mice. Our results suggest a mechanism whereby adipose differentiation occurs concurrently with the maintenance of a mesenchymal progenitor cell pool, ensuring tissue development, repair and appropriate metabolic control over the lifetime.
Single-cell transcriptomic landscape of the developing human spinal cord

Nature neuroscience

2023 Apr 24

Andersen, J;Thom, N;Shadrach, JL;Chen, X;Onesto, MM;Amin, ND;Yoon, SJ;Li, L;Greenleaf, WJ;Müller, F;Pașca, AM;Kaltschmidt, JA;Pașca, SP;
PMID: 37095394 | DOI: 10.1038/s41593-023-01311-w

Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.
Amino acid transporter SLC7A5 regulates Paneth cell function to affect the intestinal inflammatory response

bioRxiv : the preprint server for biology

2023 Jan 24

Bao, L;Fu, L;Su, Y;Chen, Z;Peng, Z;Sun, L;Gonzalez, FJ;Wu, C;Zhang, H;Shi, B;Shi, YB;
PMID: 36789439 | DOI: 10.1101/2023.01.24.524966

The intestine is critical for not only processing and resorbing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell-specific knockout ( ΔIEC ) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5 ΔIEC reduces mTORC1 signaling. Surprisingly, Slc7a5 ΔIEC mice have increased cell proliferation but reduced secretory cells, particularly mature Paneth cells. scRNA-seq and electron microscopic analyses revealed dedifferentiation of Paneth cells in Slc7a5 ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. We further show that Slc7a5 ΔIEC mice are prone to experimental colitis. Thus, SLC7A5 regulates secretory cell differentiation to affect stem cell niche and/or inflammatory response to regulate cell proliferation.
Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression

Nature cell biology

2023 Jan 30

Martino, P;Sunkara, R;Heitman, N;Rangl, M;Brown, A;Saxena, N;Grisanti, L;Kohan, D;Yanagisawa, M;Rendl, M;
PMID: 36717629 | DOI: 10.1038/s41556-022-01065-w

Substantial follicle remodelling during the regression phase of the hair growth cycle is coordinated by the contraction of the dermal sheath smooth muscle, but how dermal-sheath-generated forces are regulated is unclear. Here, we identify spatiotemporally controlled endothelin signalling-a potent vasoconstriction-regulating pathway-as the key activating mechanism of dermal sheath contraction. Pharmacological blocking or genetic ablation of both endothelin receptors, ETA and ETB, impedes dermal sheath contraction and halts follicle regression. Epithelial progenitors at the club hair-epithelial strand bottleneck produce the endothelin ligand ET-1, which is required for follicle regression. ET signalling in dermal sheath cells and downstream contraction is dynamically regulated by cytoplasmic Ca2+ levels through cell membrane and sarcoplasmic reticulum calcium channels. Together, these findings illuminate an epithelial-mesenchymal interaction paradigm in which progenitors-destined to undergo programmed cell death-control the contraction of the surrounding sheath smooth muscle to orchestrate homeostatic tissue regression and reorganization for the next stem cell activation and regeneration cycle.
Dental niche cells directly contribute to tooth reconstitution and morphogenesis

Cell reports

2022 Dec 06

Hu, H;Duan, Y;Wang, K;Fu, H;Liao, Y;Wang, T;Zhang, Z;Kang, F;Zhang, B;Zhang, H;Huo, F;Yin, Y;Chen, G;Hu, H;Cai, H;Tian, W;Li, Z;
PMID: 36476878 | DOI: 10.1016/j.celrep.2022.111737

Mammalian teeth develop from the inductive epithelial-mesenchymal interaction, an important mechanism shared by many organs. The cellular basis for such interaction remains elusive. Here, we generate a dual-fluorescence model to track and analyze dental cells from embryonic to postnatal stages, in which Pitx2+ epithelium and Msx1+ mesenchyme are sufficient for tooth reconstitution. Single-cell RNA sequencing and spatial mapping further revealed critical cellular dynamics during molar development, where tooth germs are organized by Msx1+Sdc1+ dental papilla and surrounding dental niche. Surprisingly, niche cells are more efficient in tooth reconstitution and can directly regenerate papilla cells through interaction with dental epithelium. Finally, from the dental niche, we identify a group of previously unappreciated migratory Msx1+ Sox9+ cells as the potential cell origin for dental papilla. Our results indicate that the dental niche cells directly contribute to tooth organogenesis and provide critical insights into the essential cell composition for tooth engineering.
Postnatal expansion of mesenteric lymph node stromal cells towards reticular and CD34+ stromal cell subsets

Nature communications

2022 Nov 24

Pezoldt, J;Wiechers, C;Zou, M;Litovchenko, M;Biocanin, M;Beckstette, M;Sitnik, K;Palatella, M;van Mierlo, G;Chen, W;Gardeux, V;Floess, S;Ebel, M;Russeil, J;Arampatzi, P;Vafardanejad, E;Saliba, AE;Deplancke, B;Huehn, J;
PMID: 36433946 | DOI: 10.1038/s41467-022-34868-4

Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.
Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset

Science advances

2022 Nov 18

Shi, X;Zhuang, Y;Chen, Z;Xu, M;Kuang, J;Sun, XL;Gao, L;Kuang, X;Zhang, H;Li, W;Wong, SZH;Liu, C;Liu, L;Jiang, D;Pei, D;Lin, Y;Wu, QF;
PMID: 36383654 | DOI: 10.1126/sciadv.abq2987

The neuroendocrine system consists of a heterogeneous collection of neuropeptidergic neurons in the brain, among which hypothalamic KNDy neurons represent an indispensable cell subtype controlling puberty onset. Although neural progenitors and neuronal precursors along the cell lineage hierarchy adopt a cascade diversification strategy to generate hypothalamic neuronal heterogeneity, the cellular logic operating within the lineage to specify a subtype of neuroendocrine neurons remains unclear. As human genetic studies have recently established a link between TBX3 mutations and delayed puberty onset, we systematically studied Tbx3-derived neuronal lineage and Tbx3-dependent neuronal specification and found that Tbx3 hierarchically established and maintained the identity of KNDy neurons for triggering puberty. Apart from the well-established lineage-dependent fate determination, we uncovered rules of interlineage interaction and intralineage retention operating through neuronal differentiation in the absence of Tbx3. Moreover, we revealed that human TBX3 mutations disturbed the phase separation of encoded proteins and impaired transcriptional regulation of key neuropeptides, providing a pathological mechanism underlying TBX3-associated puberty disorders.

Pages

  • « first
  • ‹ previous
  • …
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?