Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (494)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (54) Apply TBD filter
  • Lgr5 (22) Apply Lgr5 filter
  • Axin2 (12) Apply Axin2 filter
  • Sox9 (10) Apply Sox9 filter
  • GLI1 (9) Apply GLI1 filter
  • COL1A1 (8) Apply COL1A1 filter
  • PDGFRA (8) Apply PDGFRA filter
  • Col2a1 (8) Apply Col2a1 filter
  • Ptch1 (7) Apply Ptch1 filter
  • Wnt4 (6) Apply Wnt4 filter
  • Dmp1 (6) Apply Dmp1 filter
  • Wnt5a (6) Apply Wnt5a filter
  • WNT2 (6) Apply WNT2 filter
  • ACTA2 (5) Apply ACTA2 filter
  • Bmp4 (5) Apply Bmp4 filter
  • Sp7 (5) Apply Sp7 filter
  • FOS (5) Apply FOS filter
  • OLFM4 (5) Apply OLFM4 filter
  • SHH (5) Apply SHH filter
  • GJA5 (5) Apply GJA5 filter
  • SOX2 (4) Apply SOX2 filter
  • Rspo1 (4) Apply Rspo1 filter
  • Rspo3 (4) Apply Rspo3 filter
  • GFAP (4) Apply GFAP filter
  • Lgr6 (4) Apply Lgr6 filter
  • Olig2 (4) Apply Olig2 filter
  • Dspp (4) Apply Dspp filter
  • Runx2 (4) Apply Runx2 filter
  • Osr1 (4) Apply Osr1 filter
  • Adamts18 (4) Apply Adamts18 filter
  • Kiss1 (4) Apply Kiss1 filter
  • Dlx5 (4) Apply Dlx5 filter
  • Wnt16 (3) Apply Wnt16 filter
  • Wnt7b (3) Apply Wnt7b filter
  • Fgfr3 (3) Apply Fgfr3 filter
  • egfp (3) Apply egfp filter
  • Bmp5 (3) Apply Bmp5 filter
  • Rspo2 (3) Apply Rspo2 filter
  • CDKN1A (3) Apply CDKN1A filter
  • CDKN2A (3) Apply CDKN2A filter
  • Nrg1 (3) Apply Nrg1 filter
  • EPCAM (3) Apply EPCAM filter
  • EREG (3) Apply EREG filter
  • FGFR1 (3) Apply FGFR1 filter
  • FGFR2 (3) Apply FGFR2 filter
  • GREM1 (3) Apply GREM1 filter
  • HIF1A (3) Apply HIF1A filter
  • Chrdl1 (3) Apply Chrdl1 filter
  • KRT5 (3) Apply KRT5 filter
  • Hopx (3) Apply Hopx filter

Product

  • RNAscope Multiplex Fluorescent Assay (179) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (72) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (49) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (33) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (29) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent v2 (21) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (15) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.0 Assay (9) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (9) Apply RNAscope 2.5 HD Duplex filter
  • TBD (8) Apply TBD filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • Basescope (4) Apply Basescope filter
  • RNAscope HiPlex v2 assay (4) Apply RNAscope HiPlex v2 assay filter
  • BASEscope Assay RED (3) Apply BASEscope Assay RED filter
  • BaseScope Duplex Assay (3) Apply BaseScope Duplex Assay filter
  • miRNAscope (2) Apply miRNAscope filter
  • RNAscope Multiplex fluorescent reagent kit v2 (2) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.5 HD Reagent Kit (1) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter

Research area

  • (-) Remove Development filter Development (494)
  • Neuroscience (103) Apply Neuroscience filter
  • Stem Cells (17) Apply Stem Cells filter
  • Reproduction (14) Apply Reproduction filter
  • Inflammation (13) Apply Inflammation filter
  • Bone (12) Apply Bone filter
  • Stem cell (12) Apply Stem cell filter
  • Heart (10) Apply Heart filter
  • Teeth (8) Apply Teeth filter
  • lncRNA (7) Apply lncRNA filter
  • Kidney (6) Apply Kidney filter
  • Lung (6) Apply Lung filter
  • Regeneration (6) Apply Regeneration filter
  • Reproductive Biology (6) Apply Reproductive Biology filter
  • Metabolism (5) Apply Metabolism filter
  • Cancer (4) Apply Cancer filter
  • Eye (4) Apply Eye filter
  • Sex Differences (4) Apply Sex Differences filter
  • Behavior (3) Apply Behavior filter
  • Fibrosis (3) Apply Fibrosis filter
  • Neurodevelopment (3) Apply Neurodevelopment filter
  • Other: Heart (3) Apply Other: Heart filter
  • Progenitor Cells (3) Apply Progenitor Cells filter
  • Single Cell (3) Apply Single Cell filter
  • Aging (2) Apply Aging filter
  • Cardiac (2) Apply Cardiac filter
  • Cardiology (2) Apply Cardiology filter
  • Cell Biology (2) Apply Cell Biology filter
  • diabetes (2) Apply diabetes filter
  • Ear (2) Apply Ear filter
  • Endocrine (2) Apply Endocrine filter
  • Endocrinology (2) Apply Endocrinology filter
  • Infectious (2) Apply Infectious filter
  • LncRNAs (2) Apply LncRNAs filter
  • Regenerative dentistry (2) Apply Regenerative dentistry filter
  • Schizophrenia (2) Apply Schizophrenia filter
  • Skin (2) Apply Skin filter
  • therapeutics (2) Apply therapeutics filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • Cardio (1) Apply Cardio filter
  • CGT (1) Apply CGT filter
  • Evolution (1) Apply Evolution filter
  • Hearing (1) Apply Hearing filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Methods (1) Apply Other: Methods filter
  • Signalling (1) Apply Signalling filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (494) Apply Publications filter
Smad3 regulates smooth muscle cell fate and mediates adverse remodeling and calcification of the atherosclerotic plaque

Nature Cardiovascular Research

2022 Apr 01

Cheng, P;Wirka, R;Kim, J;Kim, H;Nguyen, T;Kundu, R;Zhao, Q;Sharma, D;Pedroza, A;Nagao, M;Iyer, D;Fischbein, M;Quertermous, T;
| DOI: 10.1038/s44161-022-00042-8

Atherosclerotic plaques consist mostly of smooth muscle cells (SMCs), and genes that influence SMC phenotype can modulate coronary artery disease (CAD) risk. Allelic variation at 15q22.33 has been identified by genome-wide association studies to modify the risk of CAD and is associated with the expression of _SMAD3_ in SMCs. However, the mechanism by which this gene modifies CAD risk remains poorly understood. Here we show that SMC-specific deletion of _Smad3_ in a murine atherosclerosis model resulted in greater plaque burden, more outward remodeling and increased vascular calcification. Single-cell transcriptomic analyses revealed that loss of _Smad3_ altered SMC transition cell state toward two fates: an SMC phenotype that governs both vascular remodeling and recruitment of inflammatory cells as well as a chondromyocyte fate. Together, the findings reveal that _Smad3_ expression in SMCs inhibits the emergence of specific SMC phenotypic transition cells that mediate adverse plaque features, including outward remodeling, monocyte recruitment and vascular calcification.
SOX11 variants cause a neurodevelopmental disorder with infrequent ocular malformations and hypogonadotropic hypogonadism and with distinct DNA methylation profile

Genetics in medicine : official journal of the American College of Medical Genetics

2022 Mar 24

Al-Jawahiri, R;Foroutan, A;Kerkhof, J;McConkey, H;Levy, M;Haghshenas, S;Rooney, K;Turner, J;Shears, D;Holder, M;Lefroy, H;Castle, B;Reis, LM;Semina, EV;Lachlan, K;Chandler, K;Wright, T;Clayton-Smith, J;Hug, FP;Pitteloud, N;Bartoloni, L;Hoffjan, S;Park, SM;Thankamony, A;Lees, M;Wakeling, E;Naik, S;Hanker, B;Girisha, KM;Agolini, E;Giuseppe, Z;Alban, Z;Tessarech, M;Keren, B;Afenjar, A;Zweier, C;Reis, A;Smol, T;Tsurusaki, Y;Nobuhiko, O;Sekiguchi, F;Tsuchida, N;Matsumoto, N;Kou, I;Yonezawa, Y;Ikegawa, S;Callewaert, B;Freeth, M;Kleinendorst, L;Donaldson, A;Alders, M;De Paepe, A;Sadikovic, B;McNeill, A;University of Washington Center for Mendelian Genomics (UW-CMG), ;Genomics England Research Consortium, ;
PMID: 35341651 | DOI: 10.1016/j.gim.2022.02.013

This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants.Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope.We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies.SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.
Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1

Cell reports

2022 Jan 11

Han, Y;Villarreal-Ponce, A;Gutierrez, G;Nguyen, Q;Sun, P;Wu, T;Sui, B;Berx, G;Brabletz, T;Kessenbrock, K;Zeng, YA;Watanabe, K;Dai, X;
PMID: 35021086 | DOI: 10.1016/j.celrep.2021.110240

Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.
Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage

Cell reports

2021 Dec 14

Chesnokova, V;Zonis, S;Apostolou, A;Estrada, HQ;Knott, S;Wawrowsky, K;Michelsen, K;Ben-Shlomo, A;Barrett, R;Gorbunova, V;Karalis, K;Melmed, S;
PMID: 34910915 | DOI: 10.1016/j.celrep.2021.110068

Microenvironmental factors modulating age-related DNA damage are unclear. Non-pituitary growth hormone (npGH) is induced in human colon, non-transformed human colon cells, and fibroblasts, and in 3-dimensional intestinal organoids with age-associated DNA damage. Autocrine/paracrine npGH suppresses p53 and attenuates DNA damage response (DDR) by inducing TRIM29 and reducing ATM phosphorylation, leading to reduced DNA repair and DNA damage accumulation. Organoids cultured up to 4 months exhibit aging markers, p16, and SA-β-galactosidase and decreased telomere length, as well as DNA damage accumulation, with increased npGH, suppressed p53, and attenuated DDR. Suppressing GH in aged organoids increases p53 and decreases DNA damage. WT mice exhibit age-dependent colon DNA damage accumulation, while in aged mice devoid of colon GH signaling, DNA damage remains low, with elevated p53. As age-associated npGH induction enables a pro-proliferative microenvironment, abrogating npGH signaling could be targeted as anti-aging therapy by impeding DNA damage and age-related pathologies.
A single-cell atlas of mouse lung development

Development (Cambridge, England)

2021 Dec 15

Negretti, NM;Plosa, EJ;Benjamin, JT;Schuler, BA;Habermann, AC;Jetter, CS;Gulleman, P;Bunn, C;Hackett, AN;Ransom, M;Taylor, CJ;Nichols, D;Matlock, BK;Guttentag, SH;Blackwell, TS;Banovich, NE;Kropski, JA;Sucre, JMS;
PMID: 34927678 | DOI: 10.1242/dev.199512

Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.
High mobility group AT-hook 2 regulates osteoblast differentiation and facial bone development

Biochemical and biophysical research communications

2021 Dec 27

Negishi, T;Mihara, N;Chiba, T;D'Armiento, J;Chada, K;Maeda, M;Igarashi, M;Imai, K;
PMID: 34973532 | DOI: 10.1016/j.bbrc.2021.12.093

The mutation and deletion of high mobility group AT-hook 2 (Hmga2) gene exhibit skeletal malformation, but almost nothing is known about the mechanism. This study examined morphological anomaly of facial bone in Hmga2-/- mice and osteoblast differentiation of pre-osteoblast MC3T3-E1 cells with Hmga2 gene knockout (A2KO). Hmga2-/- mice showed the size reduction of anterior frontal part of facial bones. Hmga2 protein and mRNA were expressed in mesenchymal cells at ossification area of nasal bone. A2KO cells differentiation into osteoblasts after reaching the proliferation plateau was strongly suppressed by alizarin red and alkaline phosphatase staining analyses. Expression of osteoblast-related genes, especially Osterix, was down-regulated in A2KO cells. These results demonstrate a close association of Hmga2 with osteoblast differentiation of mesenchymal cells and bone growth. Although future studies are needed, the present study suggests an involvement of Hmga2 in osteoblast-genesis and bone growth.
YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1

iScience

2021 Sep 24

Gokey, JJ;Snowball, J;Sridharan, A;Sudha, P;Kitzmiller, JA;Xu, Y;Whitsett, JA;
PMID: 34466790 | DOI: 10.1016/j.isci.2021.102967

Ventilation is dependent upon pulmonary alveoli lined by two major epithelial cell types, alveolar type-1 (AT1) and 2 (AT2) cells. AT1 cells mediate gas exchange while AT2 cells synthesize and secrete pulmonary surfactants and serve as progenitor cells which repair the alveoli. We developed transgenic mice in which YAP was activated or deleted to determine its roles in alveolar epithelial cell differentiation. Postnatal YAP activation increased epithelial cell proliferation, increased AT1 cell numbers, and caused indeterminate differentiation of subsets of alveolar cells expressing atypical genes normally restricted to airway epithelial cells. YAP deletion increased expression of genes associated with mature AT2 cells. YAP activation enhanced DNA accessibility in promoters of transcription factors and motif enrichment analysis predicted target genes associated with alveolar cell differentiation. YAP participated with KLF5, NFIB, and NKX2-1 to regulate AGER. YAP plays a central role in a transcriptional network that regulates alveolar epithelial differentiation.
Perinatal angiogenesis from pre-existing coronary vessels via DLL4-NOTCH1 signalling

Nature cell biology

2021 Sep 01

Lu, P;Wang, Y;Liu, Y;Wang, Y;Wu, B;Zheng, D;Harvey, RP;Zhou, B;
PMID: 34497373 | DOI: 10.1038/s41556-021-00747-1

New coronary vessels are added to the heart around birth to support postnatal cardiac growth. Here we show that, in late fetal development, the embryonic coronary plexus at the inner myocardium of the ventricles expresses the angiogenic signalling factors VEGFR3 and DLL4 and generates new coronary vessels in neonates. Contrary to a previous model in which the formation of new coronary vessels in neonates from ventricular endocardial cells was proposed, we find that late fetal and neonatal ventricular endocardial cells lack angiogenic potential and do not contribute to new coronary vessels. Instead, we show using lineage-tracing as well as gain- and loss-of-function experiments that the pre-existing embryonic coronary plexus at the inner myocardium undergoes angiogenic expansion through the DLL4-NOTCH1 signalling pathway to vascularize the expanding myocardium. We also show that the pre-existing coronary plexus revascularizes the regenerating neonatal heart through a similar mechanism. These findings provide a different model of neonatal coronary angiogenesis and regeneration, potentially informing cardiovascular medicine.
Microglia-neuron interaction at nodes of Ranvier depends on neuronal activity through potassium release and contributes to remyelination

Nature communications

2021 Sep 01

Ronzano, R;Roux, T;Thetiot, M;Aigrot, MS;Richard, L;Lejeune, FX;Mazuir, E;Vallat, JM;Lubetzki, C;Desmazières, A;
PMID: 34471138 | DOI: 10.1038/s41467-021-25486-7

Microglia, the resident immune cells of the central nervous system, are key players in healthy brain homeostasis and plasticity. In neurological diseases, such as Multiple Sclerosis, activated microglia either promote tissue damage or favor neuroprotection and myelin regeneration. The mechanisms for microglia-neuron communication remain largely unkown. Here, we identify nodes of Ranvier as a direct site of interaction between microglia and axons, in both mouse and human tissues. Using dynamic imaging, we highlight the preferential interaction of microglial processes with nodes of Ranvier along myelinated fibers. We show that microglia-node interaction is modulated by neuronal activity and associated potassium release, with THIK-1 ensuring their microglial read-out. Altered axonal K+ flux following demyelination impairs the switch towards a pro-regenerative microglia phenotype and decreases remyelination rate. Taken together, these findings identify the node of Ranvier as a major site for microglia-neuron interaction, that may participate in microglia-neuron communication mediating pro-remyelinating effect of microglia after myelin injury.
Inhibition of the cGAS-STING pathway ameliorates the premature senescence hallmarks of Ataxia-Telangiectasia brain organoids

Aging cell

2021 Sep 01

Aguado, J;Chaggar, HK;Gómez-Inclán, C;Shaker, MR;Leeson, HC;Mackay-Sim, A;Wolvetang, EJ;
PMID: 34459078 | DOI: 10.1111/acel.13468

Ataxia-telangiectasia (A-T) is a genetic disorder caused by the lack of functional ATM kinase. A-T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A-T remains elusive. Here, we utilize human pluripotent stem cell-derived cortical brain organoids to study A-T neuropathology. Mechanistically, we show that the cGAS-STING pathway is required for the recognition of micronuclei and induction of a senescence-associated secretory phenotype (SASP) in A-T olfactory neurosphere-derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self-DNA-triggered SASP expression in A-T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A-T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A-T and constitutes a novel therapeutic target for treating neuropathology in A-T patients.
Yap/Taz inhibit goblet cell fate to maintain lung epithelial homeostasis

Cell reports

2021 Jul 13

Hicks-Berthet, J;Ning, B;Federico, A;Tilston-Lunel, A;Matschulat, A;Ai, X;Lenburg, ME;Beane, J;Monti, S;Varelas, X;
PMID: 34260916 | DOI: 10.1016/j.celrep.2021.109347

Proper lung function relies on the precise balance of specialized epithelial cells that coordinate to maintain homeostasis. Herein, we describe essential roles for the transcriptional regulators YAP/TAZ in maintaining lung epithelial homeostasis, reporting that conditional deletion of Yap and Wwtr1/Taz in the lung epithelium of adult mice results in severe defects, including alveolar disorganization and the development of airway mucin hypersecretion. Through in vivo lineage tracing and in vitro molecular experiments, we reveal that reduced YAP/TAZ activity promotes intrinsic goblet transdifferentiation of secretory airway epithelial cells. Global gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggest that YAP/TAZ act cooperatively with TEA domain (TEAD) transcription factors and the NuRD complex to suppress the goblet cell fate program, directly repressing the SPDEF gene. Collectively, our study identifies YAP/TAZ as critical factors in lung epithelial homeostasis and offers molecular insight into the mechanisms promoting goblet cell differentiation, which is a hallmark of many lung diseases.
NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking EGFR and TLR activation

Cell reports

2021 Apr 06

van der Post, S;Birchenough, GMH;Held, JM;
PMID: 33826887 | DOI: 10.1016/j.celrep.2021.108949

The colon epithelium is a primary point of interaction with the microbiome and is regenerated by a few rapidly cycling colonic stem cells (CSCs). CSC self-renewal and proliferation are regulated by growth factors and the presence of bacteria. However, the molecular link connecting the diverse inputs that maintain CSC homeostasis remains largely unknown. We report that CSC proliferation is mediated by redox-dependent activation of epidermal growth factor receptor (EGFR) signaling via NADPH oxidase 1 (NOX1). NOX1 expression is CSC specific and is restricted to proliferative CSCs. In the absence of NOX1, CSCs fail to generate ROS and have a reduced proliferation rate. NOX1 expression is regulated by Toll-like receptor activation in response to the microbiota and serves to link CSC proliferation with the presence of bacterial components in the crypt. The TLR-NOX1-EGFR axis is therefore a critical redox signaling node in CSCs facilitating the quiescent-proliferation transition and responds to the microbiome to maintain colon homeostasis.

Pages

  • « first
  • ‹ previous
  • …
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?