Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (494)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (54) Apply TBD filter
  • Lgr5 (22) Apply Lgr5 filter
  • Axin2 (12) Apply Axin2 filter
  • Sox9 (10) Apply Sox9 filter
  • GLI1 (9) Apply GLI1 filter
  • COL1A1 (8) Apply COL1A1 filter
  • PDGFRA (8) Apply PDGFRA filter
  • Col2a1 (8) Apply Col2a1 filter
  • Ptch1 (7) Apply Ptch1 filter
  • Wnt4 (6) Apply Wnt4 filter
  • Dmp1 (6) Apply Dmp1 filter
  • Wnt5a (6) Apply Wnt5a filter
  • WNT2 (6) Apply WNT2 filter
  • ACTA2 (5) Apply ACTA2 filter
  • Bmp4 (5) Apply Bmp4 filter
  • Sp7 (5) Apply Sp7 filter
  • FOS (5) Apply FOS filter
  • OLFM4 (5) Apply OLFM4 filter
  • SHH (5) Apply SHH filter
  • GJA5 (5) Apply GJA5 filter
  • SOX2 (4) Apply SOX2 filter
  • Rspo1 (4) Apply Rspo1 filter
  • Rspo3 (4) Apply Rspo3 filter
  • GFAP (4) Apply GFAP filter
  • Lgr6 (4) Apply Lgr6 filter
  • Olig2 (4) Apply Olig2 filter
  • Dspp (4) Apply Dspp filter
  • Runx2 (4) Apply Runx2 filter
  • Osr1 (4) Apply Osr1 filter
  • Adamts18 (4) Apply Adamts18 filter
  • Kiss1 (4) Apply Kiss1 filter
  • Dlx5 (4) Apply Dlx5 filter
  • Wnt16 (3) Apply Wnt16 filter
  • Wnt7b (3) Apply Wnt7b filter
  • Fgfr3 (3) Apply Fgfr3 filter
  • egfp (3) Apply egfp filter
  • Bmp5 (3) Apply Bmp5 filter
  • Rspo2 (3) Apply Rspo2 filter
  • CDKN1A (3) Apply CDKN1A filter
  • CDKN2A (3) Apply CDKN2A filter
  • Nrg1 (3) Apply Nrg1 filter
  • EPCAM (3) Apply EPCAM filter
  • EREG (3) Apply EREG filter
  • FGFR1 (3) Apply FGFR1 filter
  • FGFR2 (3) Apply FGFR2 filter
  • GREM1 (3) Apply GREM1 filter
  • HIF1A (3) Apply HIF1A filter
  • Chrdl1 (3) Apply Chrdl1 filter
  • KRT5 (3) Apply KRT5 filter
  • Hopx (3) Apply Hopx filter

Product

  • RNAscope Multiplex Fluorescent Assay (179) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (72) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (49) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (33) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (29) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent v2 (21) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (15) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.0 Assay (9) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (9) Apply RNAscope 2.5 HD Duplex filter
  • TBD (8) Apply TBD filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • Basescope (4) Apply Basescope filter
  • RNAscope HiPlex v2 assay (4) Apply RNAscope HiPlex v2 assay filter
  • BASEscope Assay RED (3) Apply BASEscope Assay RED filter
  • BaseScope Duplex Assay (3) Apply BaseScope Duplex Assay filter
  • miRNAscope (2) Apply miRNAscope filter
  • RNAscope Multiplex fluorescent reagent kit v2 (2) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.5 HD Reagent Kit (1) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter

Research area

  • (-) Remove Development filter Development (494)
  • Neuroscience (103) Apply Neuroscience filter
  • Stem Cells (17) Apply Stem Cells filter
  • Reproduction (14) Apply Reproduction filter
  • Inflammation (13) Apply Inflammation filter
  • Bone (12) Apply Bone filter
  • Stem cell (12) Apply Stem cell filter
  • Heart (10) Apply Heart filter
  • Teeth (8) Apply Teeth filter
  • lncRNA (7) Apply lncRNA filter
  • Kidney (6) Apply Kidney filter
  • Lung (6) Apply Lung filter
  • Regeneration (6) Apply Regeneration filter
  • Reproductive Biology (6) Apply Reproductive Biology filter
  • Metabolism (5) Apply Metabolism filter
  • Cancer (4) Apply Cancer filter
  • Eye (4) Apply Eye filter
  • Sex Differences (4) Apply Sex Differences filter
  • Behavior (3) Apply Behavior filter
  • Fibrosis (3) Apply Fibrosis filter
  • Neurodevelopment (3) Apply Neurodevelopment filter
  • Other: Heart (3) Apply Other: Heart filter
  • Progenitor Cells (3) Apply Progenitor Cells filter
  • Single Cell (3) Apply Single Cell filter
  • Aging (2) Apply Aging filter
  • Cardiac (2) Apply Cardiac filter
  • Cardiology (2) Apply Cardiology filter
  • Cell Biology (2) Apply Cell Biology filter
  • diabetes (2) Apply diabetes filter
  • Ear (2) Apply Ear filter
  • Endocrine (2) Apply Endocrine filter
  • Endocrinology (2) Apply Endocrinology filter
  • Infectious (2) Apply Infectious filter
  • LncRNAs (2) Apply LncRNAs filter
  • Regenerative dentistry (2) Apply Regenerative dentistry filter
  • Schizophrenia (2) Apply Schizophrenia filter
  • Skin (2) Apply Skin filter
  • therapeutics (2) Apply therapeutics filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • Cardio (1) Apply Cardio filter
  • CGT (1) Apply CGT filter
  • Evolution (1) Apply Evolution filter
  • Hearing (1) Apply Hearing filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Methods (1) Apply Other: Methods filter
  • Signalling (1) Apply Signalling filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (494) Apply Publications filter
SOX17-positive rete testis epithelium is required for Sertoli valve formation and normal spermiogenesis in the male mouse

Nature communications

2022 Dec 21

Uchida, A;Imaimatsu, K;Suzuki, H;Han, X;Ushioda, H;Uemura, M;Imura-Kishi, K;Hiramatsu, R;Takase, HM;Hirate, Y;Ogura, A;Kanai-Azuma, M;Kudo, A;Kanai, Y;
PMID: 36543770 | DOI: 10.1038/s41467-022-35465-1

Seminiferous tubules (STs) in the mammalian testes are connected to the rete testis (RT) via a Sertoli valve (SV). Spermatozoa produced in the STs are released into the tubular luminal fluid and passively transported through the SV into the RT. However, the physiological functions of the RT and SV remain unclear. Here, we identified the expression of Sox17 in RT epithelia. The SV valve was disrupted before puberty in RT-specific Sox17 conditional knockout (Sox17-cKO) male mice. This induced a backflow of RT fluid into the STs, which caused aberrant detachment of immature spermatids. RT of Sox17-cKO mice had reduced expression levels of various growth factor genes, which presumably support SV formation. When transplanted next to the Sox17+ RT, Sertoli cells of Sox17-cKO mice reconstructed the SV and supported proper spermiogenesis in the STs. This study highlights the novel and unexpected modulatory roles of the RT in SV valve formation and spermatogenesis in mouse testes, as a downstream action of Sox17.
Prematurely terminated intron-retaining mRNAs invade axons in SFPQ null-driven neurodegeneration and are a hallmark of ALS

Nature communications

2022 Nov 22

Taylor, R;Hamid, F;Fielding, T;Gordon, PM;Maloney, M;Makeyev, EV;Houart, C;
PMID: 36414621 | DOI: 10.1038/s41467-022-34331-4

Loss of SFPQ is a hallmark of motor degeneration in ALS and prevents maturation of motor neurons when occurring during embryogenesis. Here, we show that in zebrafish, developing motor neurons lacking SFPQ exhibit axon extension, branching and synaptogenesis defects, prior to degeneration. Subcellular transcriptomics reveals that loss of SFPQ in neurons produces a complex set of aberrant intron-retaining (IR) transcripts coding for neuron-specific proteins that accumulate in neurites. Some of these local IR mRNAs are prematurely terminated within the retained intron (PreT-IR). PreT-IR mRNAs undergo intronic polyadenylation, nuclear export, and localise to neurites in vitro and in vivo. We find these IR and PreT-IR mRNAs enriched in RNAseq datasets of tissue from patients with familial and sporadic ALS. This shared signature, between SFPQ-depleted neurons and ALS, functionally implicates SFPQ with the disease and suggests that neurite-centred perturbation of alternatively spliced isoforms drives the neurodegenerative process.
Sirt2 promotes white matter oligodendrogenesis during development and in models of neonatal hypoxia

Nature communications

2022 Aug 15

Jablonska, B;Adams, KL;Kratimenos, P;Li, Z;Strickland, E;Haydar, TF;Kusch, K;Nave, KA;Gallo, V;
PMID: 35970992 | DOI: 10.1038/s41467-022-32462-2

Delayed oligodendrocyte (OL) maturation caused by hypoxia (Hx)-induced neonatal brain injury results in hypomyelination and leads to neurological disabilities. Previously, we characterized Sirt1 as a crucial regulator of OL progenitor cell (OPC) proliferation in response to Hx. We now identify Sirt2 as a critical promoter of OL differentiation during both normal white matter development and in a mouse model of Hx. Importantly, we find that Hx reduces Sirt2 expression in mature OLs and that Sirt2 overexpression in OPCs restores mature OL populations. Reduced numbers of Sirt2+ OLs were also observed in the white matter of preterm human infants. We show that Sirt2 interacts with p27Kip1/FoxO1, p21Cip1/Cdk4, and Cdk5 pathways, and that these interactions are altered by Hx. Furthermore, Hx induces nuclear translocation of Sirt2 in OPCs where it binds several genomic targets. Overall, these results indicate that a balance of Sirt1 and Sirt2 activity is required for developmental oligodendrogenesis, and that these proteins represent potential targets for promoting repair following white matter injury.
BMP signaling in the intestinal epithelium drives a critical feedback loop to restrain IL-13-driven tuft cell hyperplasia

Science immunology

2022 May 13

Lindholm, HT;Parmar, N;Drurey, C;Campillo Poveda, M;Vornewald, PM;Ostrop, J;Díez-Sanchez, A;Maizels, RM;Oudhoff, MJ;
PMID: 35559665 | DOI: 10.1126/sciimmunol.abl6543

The intestinal tract is a common site for various types of infections including viruses, bacteria, and helminths, each requiring specific modes of immune defense. The intestinal epithelium has a pivotal role in both immune initiation and effector stages, which are coordinated by lymphocyte cytokines such as IFNγ, IL-13, and IL-22. Here, we studied intestinal epithelial immune responses using organoid image analysis based on a convolutional neural network, transcriptomic analysis, and in vivo infection models. We found that IL-13 and IL-22 both induce genes associated with goblet cells, but the resulting goblet cell phenotypes are dichotomous. Moreover, only IL-13-driven goblet cells are associated with classical NOTCH signaling. We further showed that IL-13 induces the bone morphogenetic protein (BMP) pathway, which acts in a negative feedback loop on immune type 2-driven tuft cell hyperplasia. This is associated with inhibiting Sox4 expression to putatively limit the tuft cell progenitor population. Blocking ALK2, a BMP receptor, with the inhibitor dorsomorphin homolog 1 (DMH1) interrupted the feedback loop, resulting in greater tuft cell numbers both in vitro and in vivo after infection with Nippostrongylus brasiliensis. Together, this investigation of cytokine effector responses revealed an unexpected and critical role for the BMP pathway in regulating type 2 immunity, which can be exploited to tailor epithelial immune responses.
TGFβ signaling is required for sclerotome resegmentation during development of the spinal column in Gallus gallus

Developmental biology

2022 May 26

Clayton, SW;Angermeier, A;Halbrooks, JE;McCardell, R;Serra, R;
PMID: 35644252 | DOI: 10.1016/j.ydbio.2022.05.013

We previously showed the importance of TGFβ signaling in development of the mouse axial skeleton. Here, we provide the first direct evidence that TGFβ signaling is required for resegmentation of the sclerotome using chick embryos. Lipophilic fluorescent tracers, DiO and DiD, were microinjected into adjacent somites of embryos treated with or without TGFβRI inhibitors, SB431542, SB525334 or SD208, at developmental day E2.5 (HH16). Lineage tracing of labeled cells was observed over the course of 4 days until the completion of resegmentation at E6.5 (HH32). Vertebrae were malformed and intervertebral discs were small and misshapen in inhibitor injected embryos. Hypaxial myofibers were also increased in thickness after treatment with the inhibitor. Inhibition of TGFβ signaling resulted in alterations in resegmentation that ranged between full, partial, and slanted shifts in distribution of DiO or DiD labeled cells within vertebrae. Patterning of rostro-caudal markers within sclerotome was disrupted at E3.5 after treatment with TGFβRI inhibitor with rostral domains expressing both rostral and caudal markers. We propose that TGFβ signaling regulates rostro-caudal polarity and subsequent resegmentation in sclerotome during spinal column development.
Loss of atm in Zebrafish as a Model of Ataxia-Telangiectasia Syndrome

Biomedicines

2022 Feb 07

Chen, K;Wang, P;Chen, J;Ying, Y;Chen, Y;Gilson, E;Lu, Y;Ye, J;
PMID: 35203601 | DOI: 10.3390/biomedicines10020392

Ataxia-telangiectasia mutated (ATM) is a key DNA damage signaling kinase that is mutated in humans with ataxia-telangiectasia (A-T) syndrome. This syndrome is characterized by neurodegeneration, immune abnormality, cancer predisposition, and premature aging. To better understand the function of ATM in vivo, we engineered a viable zebrafish model with a mutated atm gene. Zebrafish atm loss-of-function mutants show characteristic features of A-T-like motor disturbance, including coordination disorders, immunodeficiency, and tumorigenesis. The immunological disorder of atm homozygote fish is linked to the developmental blockade of hematopoiesis, which occurs at the adulthood stage and results in a decrease in infection defense but, with little effect on wound healing. Malignant neoplasms found in atm mutant fish were mainly nerve sheath tumors and myeloid leukemia, which rarely occur in A-T patients or Atm-/- mice. These results underscore the importance of atm during immune cell development. This zebrafish A-T model opens up a pathway to an improved understanding of the molecular basis of tumorigenesis in A-T and the cellular role of atm.
Advances in our understanding of nematode ion channels as potential anthelmintic targets

International Journal for Parasitology: Drugs and Drug Resistance

2021 Dec 01

Choudhary, S;Kashyap, S;Martin, R;Robertson, A;
| DOI: 10.1016/j.ijpddr.2021.12.001

Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
A neuroanatomical mechanism linking perinatal TCDD exposure to lower urinary tract dysfunction in adulthood

Disease models & mechanisms

2021 Jun 24

Turco, AE;Oakes, SR;Stietz, KPK;Dunham, CL;Joseph, DB;Chathurvedula, TS;Girardi, NM;Schneider, AJ;Gawdzik, J;Sheftel, CM;Wang, P;Wang, Z;Bjorling, DE;Ricke, WA;Tang, W;Hernandez, LL;Keast, JR;Bonev, AD;Grimes, MD;Strand, DW;Tykocki, NR;Tanguay, RL;Peterson, RE;Vezina, CM;
PMID: 34164643 | DOI: 10.1242/dmm.049068

Benign Prostatic Hyperplasia / Lower Urinary Tract Dysfunction (BPH/LUTD) is a classic disease of aging which affects nearly all men. Symptoms typically present in the fifth or sixth decade and progressively worsen over the remainder of life. Here, we identify a surprising origin of this disease that traces back to the intrauterine environment of the developing male, challenging existing paradigms about when this disease process begins. We delivered a single bolus dose of a widespread environmental contaminant, present in the serum of most Americans (2,3,7,8 tetrachlorodibenzo-p-dioxin, TCDD, 1 µg/kg), and representative of a broader class of environmental contaminants, to pregnant mice and observed an increase in the abundance of a neurotrophic factor, artemin, in the developing mouse prostate. Artemin is required for noradrenergic axon recruitment across multiple tissues and TCDD rapidly increases prostatic noradrenergic axon density in the male fetus. The hyperinnervation does not resolve, but rather persists into adulthood, when it is coupled to autonomic hyperactivity of prostatic smooth muscle and abnormal urinary function, including increased urinary frequency, a bothersome symptom in men. We offer new evidence that prostate neuroanatomical development is malleable and that intrauterine chemical exposures can permanently reprogram prostate neuromuscular function to cause male LUTD in adulthood.
D-serine availability modulates prefrontal cortex inhibitory interneuron development and circuit maturation

Scientific reports

2023 Jun 13

Folorunso, OO;Brown, SE;Baruah, J;Harvey, TL;Jami, SA;Radzishevsky, I;Wolosker, H;McNally, JM;Gray, JA;Vasudevan, A;Balu, DT;
PMID: 37311798 | DOI: 10.1038/s41598-023-35615-5

The proper development and function of telencephalic GABAergic interneurons is critical for maintaining the excitation and inhibition (E/I) balance in cortical circuits. Glutamate contributes to cortical interneuron (CIN) development via N-methyl-D-aspartate receptors (NMDARs). NMDAR activation requires the binding of a co-agonist, either glycine or D-serine. D-serine (co-agonist at many mature forebrain synapses) is racemized by the neuronal enzyme serine racemase (SR) from L-serine. We utilized constitutive SR knockout (SR-/-) mice to investigate the effect of D-serine availability on the development of CINs and inhibitory synapses in the prelimbic cortex (PrL). We found that most immature Lhx6 + CINs expressed SR and the obligatory NMDAR subunit NR1. At embryonic day 15, SR-/- mice had an accumulation of GABA and increased mitotic proliferation in the ganglionic eminence and fewer Gad1 + (glutamic acid decarboxylase 67 kDa; GAD67) cells in the E18 neocortex. Lhx6 + cells develop into parvalbumin (PV+) and somatostatin (Sst+) CINs. In the PrL of postnatal day (PND) 16 SR-/- mice, there was a significant decrease in GAD67+ and PV+, but not SST + CIN density, which was associated with reduced inhibitory postsynaptic potentials in layer 2/3 pyramidal neurons. These results demonstrate that D-serine availability is essential for prenatal CIN development and postnatal cortical circuit maturation.
Novel candidate regulators and developmental trajectory of pituitary thyrotropes

Endocrinology

2023 May 15

Cheung, LYM;Menage, L;Rizzoti, K;Hamilton, G;Dumontet, T;Basham, K;Daly, AZ;Brinkmeier, ML;Masser, BE;Treier, M;Cobb, J;Delogu, A;Lovell-Badge, R;Hammer, GD;Camper, SA;
PMID: 37183548 | DOI: 10.1210/endocr/bqad076

The pituitary gland regulates growth, metabolism, reproduction, the stress response, uterine contractions, lactation, and water retention. It secretes hormones in response to hypothalamic input, end organ feedback, and diurnal cues. The mechanisms by which pituitary stem cells are recruited to proliferate, maintain quiescence or differentiate into specific cell types, especially thyrotropes, are not well understood. We utilized single-cell RNA sequencing in juvenile P7 mouse pituitary cells to identify novel factors in pituitary cell populations, with a focus on thyrotropes and rare subtypes. We first observed cells co-expressing markers of both thyrotropes and gonadotropes, such as Pou1f1 and Nr5a1. This was validated in vivo by both immunohistochemistry and lineage tracing of thyrotropes derived from Nr5a1-Cre; mTmG mice and demonstrates that Nr5a1-progenitors give rise to a proportion of thyrotropes during development. Our dataset also identifies novel factors expressed in pars distalis and pars tuberalis thyrotropes, including the Shox2b isoform in all thyrotropes and Sox14 specifically in Pou1f1-negative pars tuberalis thyrotropes. We have therefore used single-cell transcriptomics to determine a novel developmental trajectory for thyrotropes and potential novel regulators of thyrotrope populations.
Cell-type profiling of the sympathetic nervous system using spatial transcriptomics and spatial mapping of mRNA

Developmental dynamics : an official publication of the American Association of Anatomists

2023 Feb 24

Kasemeier-Kulesa, JC;Morrison, JA;McKinney, S;Li, H;Gogol, M;Hall, K;Chen, S;Wang, Y;Perera, A;McLennan, R;Kulesa, PM;
PMID: 36840366 | DOI: 10.1002/dvdy.577

The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture.To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections.Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.
EPIREGULIN creates a developmental niche for spatially organized human intestinal enteroids

JCI insight

2023 Feb 23

Childs, CJ;Holloway, EM;Sweet, CW;Tsai, YH;Wu, A;Vallie, A;Eiken, MK;Capeling, MM;Zwick, RK;Palikuqi, B;Trentesaux, C;Wu, JH;Pellon-Cardenas, O;Zhang, CJ;Glass, IA;Loebel, C;Yu, Q;Camp, JG;Sexton, JZ;Klein, OD;Verzi, MP;Spence, JR;
PMID: 36821371 | DOI: 10.1172/jci.insight.165566

Epithelial organoids derived from intestinal tissue, called 'enteroids', recapitulate many aspects of the organ in vitro, and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identify an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells, feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown and EREG-grown enteroids show that EGF-enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine-like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.

Pages

  • « first
  • ‹ previous
  • …
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?