Sun, Q;Lee, W;Hu, H;Ogawa, T;De Leon, S;Katehis, I;Lim, CH;Takeo, M;Cammer, M;Taketo, MM;Gay, DL;Millar, SE;Ito, M;
PMID: 37076619 | DOI: 10.1038/s41586-023-05960-6
For unknow reasons, the melanocyte stem cell (McSC) system fails earlier than other adult stem cell populations1, which leads to hair greying in most humans and mice2,3. Current dogma states that McSCs are reserved in an undifferentiated state in the hair follicle niche, physically segregated from differentiated progeny that migrate away following cues of regenerative stimuli4-8. Here we show that most McSCs toggle between transit-amplifying and stem cell states for both self-renewal and generation of mature progeny, a mechanism fundamentally distinct from those of other self-renewing systems. Live imaging and single-cell RNA sequencing revealed that McSCs are mobile, translocating between hair follicle stem cell and transit-amplifying compartments where they reversibly enter distinct differentiation states governed by local microenvironmental cues (for example, WNT). Long-term lineage tracing demonstrated that the McSC system is maintained by reverted McSCs rather than by reserved stem cells inherently exempt from reversible changes. During ageing, there is accumulation of stranded McSCs that do not contribute to the regeneration of melanocyte progeny. These results identify a new model whereby dedifferentiation is integral to homeostatic stem cell maintenance and suggest that modulating McSC mobility may represent a new approach for the prevention of hair greying.
Orozco, L;Owen, L;Hofmann, J;Stockwell, A;Tao, J;Haller, S;Mukundan, V;Clarke, C;Lund, J;Sridhar, A;Mayba, O;Barr, J;Zavala, R;Graves, E;Zhang, C;Husami, N;Finley, R;Au, E;Lillvis, J;Farkas, M;Shakoor, A;Sherva, R;Kim, I;Kaminker, J;Townsend, M;Farrer, L;Yaspan, B;Chen, H;DeAngelis, M;
| DOI: 10.1016/j.xgen.2023.100302
Age-related macular degeneration (AMD) is a leading cause of blindness, affecting 200 million people worldwide. To identify genes that could be targeted for treatment, we created a molecular atlas at different stages of AMD. Our resource is comprised of RNA sequencing (RNA-seq) and DNA methylation microarrays from bulk macular retinal pigment epithelium (RPE)/choroid of clinically phenotyped normal and AMD donor eyes (n = 85), single-nucleus RNA-seq (164,399 cells), and single-nucleus assay for transposase-accessible chromatin (ATAC)-seq (125,822 cells) from the retina, RPE, and choroid of 6 AMD and 7 control donors. We identified 23 genome-wide significant loci differentially methylated in AMD, over 1,000 differentially expressed genes across different disease stages, and an AMD Muller state distinct from normal or gliosis. Chro- € matin accessibility peaks in genome-wide association study (GWAS) loci revealed putative causal genes for AMD, including HTRA1 and C6orf223. Our systems biology approach uncovered molecular mechanisms underlying AMD, including regulators of WNT signaling, FRZB and TLE2, as mechanistic players in disease.
Xu, Q;Rydz, C;Nguyen Huu, VA;Rocha, L;Palomino La Torre, C;Lee, I;Cho, W;Jabari, M;Donello, J;Lyon, DC;Brooke, RT;Horvath, S;Weinreb, RN;Ju, WK;Foik, A;Skowronska-Krawczyk, D;
PMID: 36397653 | DOI: 10.1111/acel.13737
Aging, a universal process that affects all cells in an organism, is a major risk factor for a group of neuropathies called glaucoma, where elevated intraocular pressure is one of the known stresses affecting the tissue. Our understanding of molecular impact of aging on response to stress in retina is very limited; therefore, we developed a new mouse model to approach this question experimentally. Here we show that susceptibility to response to stress increases with age and is primed on chromatin level. We demonstrate that ocular hypertension activates a stress response that is similar to natural aging and involves activation of inflammation and senescence. We show that multiple instances of pressure elevation cause aging of young retina as measured on transcriptional and DNA methylation level and are accompanied by local histone modification changes. Our data show that repeated stress accelerates appearance of aging features in tissues and suggest chromatin modifications as the key molecular components of aging. Lastly, our work further emphasizes the importance of early diagnosis and prevention as well as age-specific management of age-related diseases, including glaucoma.
Lengyel, E;Li, Y;Weigert, M;Zhu, L;Eckart, H;Javellana, M;Ackroyd, S;Xiao, J;Olalekan, S;Glass, D;Iyer, S;Krishnan, R;Bilecz, AJ;Lastra, R;Chen, M;Basu, A;
PMID: 36543131 | DOI: 10.1016/j.celrep.2022.111838
As part of the Human Cell Atlas Initiative, our goal is to generate single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq], 86,708 cells) and regulatory (single-cell assay on transposase accessible chromatin sequencing [scATAC-seq], 59,830 cells) profiles of the normal postmenopausal ovary and fallopian tube (FT). The FT contains 11 major cell types, and the ovary contains 6. The dominating cell type in the FT and ovary is the stromal cell, which expresses aging-associated genes. FT epithelial cells express multiple ovarian cancer risk-associated genes (CCDC170, RND3, TACC2, STK33, and ADGB) and show active communication between fimbrial epithelial cells and ovarian stromal cells. Integrated single-cell transcriptomics and chromatin accessibility data show that the regulatory landscape of the fimbriae is different from other anatomic regions. Cell types with similar gene expression in the FT display transcriptional profiles. These findings allow us to disentangle the cellular makeup of the postmenopausal FT and ovary, advancing our knowledge of gynecologic diseases in menopause.
Ang, SJ;Crombie, EM;Dong, H;Tan, KT;Hernando, A;Yu, D;Adamson, S;Kim, S;Withers, DJ;Huang, H;Tsai, SY;
PMID: 36526657 | DOI: 10.1038/s41467-022-35547-0
Dysregulation of mTOR complex 1 (mTORC1) activity drives neuromuscular junction (NMJ) structural instability during aging; however, downstream targets mediating this effect have not been elucidated. Here, we investigate the roles of two mTORC1 phosphorylation targets for mRNA translation, ribosome protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), in regulating NMJ structural instability induced by aging and sustained mTORC1 activation. While myofiber-specific deletion of S6k1 has no effect on NMJ structural integrity, 4EBP1 activation in murine muscle induces drastic morphological remodeling of the NMJ with enhancement of synaptic transmission. Mechanistically, structural modification of the NMJ is attributed to increased satellite cell activation and enhanced post-synaptic acetylcholine receptor (AChR) turnover upon 4EBP1 activation. Considering that loss of post-synaptic myonuclei and reduced NMJ turnover are features of aging, targeting 4EBP1 activation could induce NMJ renewal by expanding the pool of post-synaptic myonuclei as an alternative intervention to mitigate sarcopenia.
Nature biomedical engineering
You, Y;Tian, Y;Yang, Z;Shi, J;Kwak, KJ;Tong, Y;Estania, AP;Cao, J;Hsu, WH;Liu, Y;Chiang, CL;Schrank, BR;Huntoon, K;Lee, D;Li, Z;Zhao, Y;Zhang, H;Gallup, TD;Ha, J;Dong, S;Li, X;Wang, Y;Lu, WJ;Bahrani, E;Lee, LJ;Teng, L;Jiang, W;Lan, F;Kim, BYS;Lee, AS;
PMID: 36635419 | DOI: 10.1038/s41551-022-00989-w
The success of messenger RNA therapeutics largely depends on the availability of delivery systems that enable the safe, effective and stable translation of genetic material into functional proteins. Here we show that extracellular vesicles (EVs) produced via cellular nanoporation from human dermal fibroblasts, and encapsulating mRNA encoding for extracellular-matrix α1 type-I collagen (COL1A1) induced the formation of collagen-protein grafts and reduced wrinkle formation in the collagen-depleted dermal tissue of mice with photoaged skin. We also show that the intradermal delivery of the mRNA-loaded EVs via a microneedle array led to the prolonged and more uniform synthesis and replacement of collagen in the dermis of the animals. The intradermal delivery of EV-based COL1A1 mRNA may make for an effective protein-replacement therapy for the treatment of photoaged skin.
Pezoldt, J;Wiechers, C;Zou, M;Litovchenko, M;Biocanin, M;Beckstette, M;Sitnik, K;Palatella, M;van Mierlo, G;Chen, W;Gardeux, V;Floess, S;Ebel, M;Russeil, J;Arampatzi, P;Vafardanejad, E;Saliba, AE;Deplancke, B;Huehn, J;
PMID: 36433946 | DOI: 10.1038/s41467-022-34868-4
Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.