ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
EMBO molecular medicine
2022 Nov 02
van Neerven, SM;Smit, WL;van Driel, MS;Kakkar, V;de Groot, NE;Nijman, LE;Elbers, CC;Léveillé, N;Heijmans, J;Vermeulen, L;
PMID: 36321561 | DOI: 10.15252/emmm.202216194
Nature metabolism
2021 May 01
Perino, A;Velázquez-Villegas, LA;Bresciani, N;Sun, Y;Huang, Q;Fénelon, VS;Castellanos-Jankiewicz, A;Zizzari, P;Bruschetta, G;Jin, S;Baleisyte, A;Gioiello, A;Pellicciari, R;Ivanisevic, J;Schneider, BL;Diano, S;Cota, D;Schoonjans, K;
PMID: 34031591 | DOI: 10.1038/s42255-021-00398-4
Cancer Research Communications
2022 Apr 20
Brinch, S;Amundsen-Isaksen, E;Espada, S;Hammarström, C;Aizenshtadt, A;Olsen, P;Holmen, L;Høyem, M;Scholz, H;Grødeland, G;Sowa, S;Galera-Prat, A;Lehtiö, L;Meerts, I;Leenders, R;Wegert, A;Krauss, S;Waaler, J;
| DOI: 10.1158/2767-9764.crc-22-0027
Pathology - Research and Practice
2022 Mar 01
Yoshizawa, T;Uehara, T;Iwaya, M;Asaka, S;Kobayashi, S;Nakajima, T;Kinugawa, Y;Nagaya, T;Kamakura, M;Shimizu, A;Kubota, K;Notake, T;Masuo, H;Hosoda, K;Sakai, H;Hayashi, H;Umemura, K;Kamachi, A;Goto, T;Tomida, H;Yamazaki, S;Ota, H;Soejima, Y;
| DOI: 10.1016/j.prp.2022.153832
Dev Biol. 2015 May 20.
Norum HJ, Bergström Å, Andersson BA, Kuiper RV, Hoelzl MA, Sørlie T, Toftgård R.
PMID: 25990088 | DOI: canprevres.0090.2015.
Sci Rep.
2016 Feb 09
Nakagawa A, Adams CE, Huang Y, Hamarneh SR, Liu W, Von Alt KN, Mino-Kenudson M, Hodin RA, Lillemoe KD, Fernández-Del Castillo C, Warshaw AL, Liss AS.
PMID: 26856877 | DOI: 10.1038/srep20390
Absorptive and secretory cells of the small intestine are derived from a single population of Lgr5-expressing stem cells. While key genetic pathways required for differentiation into specific lineages have been defined, epigenetic programs contributing to this process remain poorly characterized. Members of the BET family of chromatin adaptors contain tandem bromodomains that mediate binding to acetylated lysines on target proteins to regulate gene expression. In this study, we demonstrate that mice treated with a small molecule inhibitor of BET bromodomains, CPI203, exhibit greater than 90% decrease in tuft and enteroendocrine cells in both crypts and villi of the small intestine, with no changes observed in goblet or Paneth cells. BET bromodomain inhibition did not alter the abundance of Lgr5-expressing stem cells in crypts, but rather exerted its effects on intermediate progenitors, in part through regulation of Ngn3 expression. When BET bromodomain inhibition was combined with the chemotherapeutic gemcitabine, pervasive apoptosis was observed in intestinal crypts, revealing an important role for BET bromodomain activity in intestinal homeostasis. Pharmacological targeting of BET bromodomains defines a novel pathway required for tuft and enteroendocrine differentiation and provides an important tool to further dissect the progression from stem cell to terminally differentiated secretory cell.
Research square
2023 Jan 10
Imada, S;Shin, H;Khawaled, S;Meckelmann, S;Whittaker, C;Correa, R;Pradhan, D;Calibasi, G;Nascentes, LN;Allies, G;Wittenhofer, P;Schmitz, O;Roper, J;Vinolo, M;Cheng, CW;Tasdogan, A;Yilmaz, ÃM;
PMID: 36711807 | DOI: 10.21203/rs.3.rs-2320717/v1
Nature
2022 Apr 01
Kadur Lakshminarasimha Murthy, P;Sontake, V;Tata, A;Kobayashi, Y;Macadlo, L;Okuda, K;Conchola, AS;Nakano, S;Gregory, S;Miller, LA;Spence, JR;Engelhardt, JF;Boucher, RC;Rock, JR;Randell, SH;Tata, PR;
PMID: 35355018 | DOI: 10.1038/s41586-022-04541-3
Gastroenterology
2022 Nov 16
Boonsanay, V;Mosa, MH;Looso, M;Weichenhan, D;Ceteci, F;Pudelko, L;Lechel, A;Michel, CS;Künne, C;Farin, HF;Plass, C;Greten, FR;
PMID: 36402192 | DOI: 10.1053/j.gastro.2022.10.036
Hum Reprod.
2018 Apr 10
Tempest N, Baker AM, Wright NA, Hapangama DK.
PMID: 29648645 | DOI: 10.1093/humrep/dey083
Abstract
STUDY QUESTION:
Is human endometrial leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) gene expression limited to the postulated epithelial stem cell niche, stratum basalis glands, and is it hormonally regulated?
SUMMARY ANSWER:
LGR5 expressing cells are not limited to the postulated stem cell niche but LGR5 expression is hormonally regulated.
WHAT IS KNOWN ALREADY:
The human endometrium is a highly regenerative tissue; however, endometrial epithelial stem cell markers are yet to be confirmed. LGR5 is a marker of stem cells in various epithelia.
STUDY DESIGN, SIZE, DURATION:
The study was conducted at a University Research Institute. Endometrial samples from 50 healthy women undergoing benign gynaecological surgery with no endometrial pathology at the Liverpool Women's hospital were included and analysed in the following six sub-categories; proliferative, secretory phases of menstrual cycle, postmenopausal, those using oral and local progestagens and samples for in vitro explant culture.
PARTICIPANTS/MATERIALS, SETTING, METHODS:
In this study, we used the gold standard method, in situ hybridisation (ISH) along with qPCR and a systems biology approach to study the location of LGR5 gene expression in full thickness human endometrium and Fallopian tubes. The progesterone regulation of endometrial LGR5 was examined in vivo and in short-term cultured endometrial tissue explants in vitro. LGR5 expression was correlated with epithelial proliferation (Ki67), and expression of previously reported epithelia progenitor markers (SOX9 and SSEA-1) immunohistochemistry (IHC).
MAIN RESULTS AND THE ROLE OF CHANCE:
LGR5 gene expression was significantly higher in the endometrial luminal epithelium than in all other epithelial compartments in the healthy human endometrium, including the endometrial stratum basalis (P < 0.05). The strongest SSEA-1 and SOX9 staining was observed in the stratum basalis glands, but the general trend of SOX9 and SSEA-1 expression followed the same cyclical pattern of expression as LGR5. Stratum functionalis epithelial Ki67-LI and LGR5 expression levels correlated significantly (r = 0.74, P = 0.01), however, they did not correlate in luminal and stratum basalis epithelium (r = 0.5 and 0.13, respectively). Endometrial LGR5 demonstrates a dynamic spatiotemporal expression pattern, suggesting hormonal regulation. Oral and local progestogens significantly reduced endometrial LGR5 mRNA levels compared with women not on hormonal treatment (P < 0.01). Our data were in agreement with in silico analysis of published endometrial microarrays.
LARGE SCALE DATA:
We did not generate our own large scale data but interrogated publically available large scale data sets.
LIMITATIONS, REASONS FOR CAUTION:
In the absence of reliable antibodies for human LGR5 protein and validated lineage markers for the various epithelial populations that potentially exist within the endometrium, our study does not formally characterise or examine the functional ability of the resident LGR5+ cells as multipotent.
WIDER IMPLICATIONS OF THE FINDINGS:
These data will facilitate future lineage tracing studies in the human endometrial epithelium; to identify the location of stem cells and further complement the in vitro functional studies, to confirm if the LGR5 expressing epithelial cells indeed represent the epithelial stem cell population.
Diabetologia
2022 Apr 27
El Mehdi, M;Takhlidjt, S;Devère, M;Arabo, A;Le Solliec, MA;Maucotel, J;Bénani, A;Nedelec, E;Duparc, C;Lefranc, B;Leprince, J;Anouar, Y;Prévost, G;Chartrel, N;Picot, M;
PMID: 35476025 | DOI: 10.1007/s00125-022-05706-5
J Cell Sci.
2017 Jan 12
Wolfe AR, Ernlund A, McGuinness W, Lehmann C, Carl K, Balmaceda N, Neufeld KL.
PMID: 28082422 | DOI: 10.1242/jcs.197574
Therapeutic strategies based on a specific oncogenic target are better justified when elimination of that particular oncogene reduces tumorigenesis in a model organism. One such oncogene, Musashi 1 (Msi-1), regulates translation of target mRNAs and is implicated in promoting tumorigenesis in colon and other tissues. Msi-1 targets include the tumor suppressor Adenomatous Polyposis Coli (Apc), a Wnt pathway antagonist lost in ∼80% of all colorectal cancers. Cell culture experiments have established that Msi-1 is a Wnt target, thus positioning Msi-1 and Apc as mutual antagonists in a double negative feedback loop. Here, we report that intestines from mice lacking Msi-1 display aberrant Apc/Msi-1 double negative feedback, reduced Wnt and Notch signaling, decreased proliferation, and changes in stem cell populations, features predicted to suppress tumorigenesis. Indeed, ApcMin and Apc1322T mice have a dramatic reduction in intestinal polyp number when Msi-1 is deleted. Together, these results provide genetic evidence that Msi-1 contributes to intestinal tumorigenesis driven by Apc loss, and validate the pursuit of Msi-1 inhibitors as chemo-prevention agents to reduce tumor burden.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com