Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (3)
  • Image gallery (0)
Refine Probe List

Content for comparison

RNAscope™ 2.5 LS Probe - Mm-Myc-No-XHs-C3

Gene

  • SARS-CoV-2 (39) Apply SARS-CoV-2 filter
  • V-nCoV2019-S (30) Apply V-nCoV2019-S filter
  • TBD (18) Apply TBD filter
  • Ace2 (9) Apply Ace2 filter
  • V-nCoV2019-S-sense (6) Apply V-nCoV2019-S-sense filter
  • SARS-CoV-2 S (6) Apply SARS-CoV-2 S filter
  • PCV3 (5) Apply PCV3 filter
  • TMPRSS2 (4) Apply TMPRSS2 filter
  • V-nCoV2019-orf1ab-sense (4) Apply V-nCoV2019-orf1ab-sense filter
  • Il-6 (3) Apply Il-6 filter
  • ZIKV (3) Apply ZIKV filter
  • PCV2 (3) Apply PCV2 filter
  • CD68 (2) Apply CD68 filter
  • CXCL10 (2) Apply CXCL10 filter
  • Ifng (2) Apply Ifng filter
  • Ifnb1 (2) Apply Ifnb1 filter
  • CVB3 (2) Apply CVB3 filter
  • Il-1b (2) Apply Il-1b filter
  • (-) Remove CBSV-Mo83 filter CBSV-Mo83 (2)
  • nCoV2019-S-sense (2) Apply nCoV2019-S-sense filter
  • Sars-cov2 (2) Apply Sars-cov2 filter
  • JEV (2) Apply JEV filter
  • V-nCoV-2019-S (2) Apply V-nCoV-2019-S filter
  • Sars-CoV-2-s (2) Apply Sars-CoV-2-s filter
  • SARS-CoV-2 spike (2) Apply SARS-CoV-2 spike filter
  • SARS- CoV-2 (2) Apply SARS- CoV-2 filter
  • KFDV (2) Apply KFDV filter
  • SARS-CoV-2 V-nCoV2019-S (2) Apply SARS-CoV-2 V-nCoV2019-S filter
  • AXL (1) Apply AXL filter
  • GAPDH (1) Apply GAPDH filter
  • Alpl (1) Apply Alpl filter
  • CFB (1) Apply CFB filter
  • Il10 (1) Apply Il10 filter
  • CXCL13 (1) Apply CXCL13 filter
  • ADCY3 (1) Apply ADCY3 filter
  • EPCAM (1) Apply EPCAM filter
  • FGFR2 (1) Apply FGFR2 filter
  • HES1 (1) Apply HES1 filter
  • INS (1) Apply INS filter
  • Gzmb (1) Apply Gzmb filter
  • (-) Remove LCN2 filter LCN2 (1)
  • DPT (1) Apply DPT filter
  • FGF7 (1) Apply FGF7 filter
  • NOTCH3 (1) Apply NOTCH3 filter
  • OLFM4 (1) Apply OLFM4 filter
  • PPIB (1) Apply PPIB filter
  • 16SrRNA (1) Apply 16SrRNA filter
  • Cd163 (1) Apply Cd163 filter
  • TNFSF13B (1) Apply TNFSF13B filter
  • Lrp2 (1) Apply Lrp2 filter

Product

  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter

Research area

  • (-) Remove Infectious filter Infectious (3)
  • Agriculture (1) Apply Agriculture filter
  • Covid (1) Apply Covid filter

Category

  • Publications (3) Apply Publications filter
Differential Tropism in Roots and Shoots of Resistant and Susceptible Cassava (Manihot esculenta Crantz) Infected by Cassava Brown Streak Viruses

Cells

2021 May 17

Sheat, S;Margaria, P;Winter, S;
PMID: 34067728 | DOI: 10.3390/cells10051221

Cassava brown streak disease (CBSD) is a destructive disease of cassava in Eastern and Central Africa. Because there was no source of resistance in African varieties to provide complete protection against the viruses causing the disease, we searched in South American germplasm and identified cassava lines that did not become infected with the cassava brown streak viruses. These findings motivated further investigations into the mechanism of virus resistance. We used RNAscope in situ hybridization to localize cassava brown streak virus in cassava germplasm lines that were highly resistant (DSC 167, immune) or that restricted virus infections to stems and roots only (DSC 260). We show that the resistance in those lines is not a restriction of long-distance movement but due to preventing virus unloading from the phloem into parenchyma cells for replication, thus restricting the virus to the phloem cells only. When DSC 167 and DSC 260 were compared for virus invasion, only a low CBSV signal was found in phloem tissue of DSC 167, indicating that there is no replication in this host, while the presence of intense hybridization signals in the phloem of DSC 260 provided evidence for virus replication in companion cells. In neither of the two lines studied was there evidence of virus replication outside the phloem tissues. Thus, we conclude that in resistant cassava lines, CBSV is confined to the phloem tissues only, in which virus replication can still take place or is arrested.
Cassava Brown Streak Viruses express second 6-kilodalton (6K2) protein with varied polarity and three dimensional (3D) structures: Basis for trait discrepancy between the virus species

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases

2022 Jan 20

Mero, HR;Lyantagaye, SL;Rudloff, EB;
PMID: 35066168 | DOI: 10.1016/j.meegid.2022.105219

Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV) are the two among six virus species speculated to cause the most catastrophic Brown Streak Disease of Cassava (CBSD) in Africa and Asia. For unknown reasons, Cassava Brown Streak Virus (CBSV) is hard to breed resistance for compared to Ugandan Cassava Brown Streak Virus (UCBSV) species. This exemplified by incidences of CBSV species rather than UCBSV species in elite breeding line, KBH 2006/0026 at Bagamoyo, Tanzania. It is not yet understood as to why CBSV species could cause resistance-breakdown in the KBH 2006/0026, unlike the UCBSV species. This marks the first in in silico study conducted to understand molecular basis for the trait discrepancy between CBSV and UCBSV species from structural biology view point, as trait disparity between them might have an interplay in the observed phenomenon. Following ab initio modelling and analysis of physical-chemical properties of second 6-kilodalton (6K2) protein encoded by CBSV and UCBSV species, using ROBETTA server and Protein Parameters tool, respectively we report that; three dimensional (3D) structures and polarity of the protein differs significantly between the two virus species. (95% and 5%) and (85% and 15%) strains of 20 CBSV and 20 UCBSV species respectively, expressed the protein in homo-trimeric and homo-tetrameric forms, correspondingly. 95% and 85% of studied strain population of the two virus species expressed hydrophilic and hydrophobic 6K2, respectively. The hydrophilic 6K2 expressed by the CBSV species, favour its faster systemic spread via vascular tissues of cassava compared to the hydrophobic 6K2 expressed by the UCBSV species. We hypothesize that, the hydrophilic 6K2 gives CBSV species interaction advantage with Nuclear Inclusion b protease domain (NIb) and Viral genome-linked protein (VPg), components of Virus Replication Complex (VRC) than the hydrophobic 6K2 expressed by UCBSV species. Experimental studies are needed to resolve 3D structures of 6K2, VPg and NIb and comprehend complex molecular interactions between them. We suggest that, 6K2 gene should be targeted for improvement of RNA interference (RNAi)-directed transgenesis of virus-resistant cassava as a more effective way to control the CBSD besides breeding.
Elevated NGAL is Associated with the Severity of Kidney Injury and Poor Prognosis of Patients with COVID-19

Kidney international reports

2021 Oct 08

Xu, K;Shang, N;Levitman, A;Corker, A;Kudose, S;Yaeh, A;Neupane, U;Stevens, J;Sampogna, R;Mills, AM;D'Agati, V;Mohan, S;Kiryluk, K;Barasch, J;
PMID: 34642645 | DOI: 10.1016/j.ekir.2021.09.005

Loss of kidney function is a common feature of COVID-19 infection, but serum creatinine (SCr) is not a sensitive or specific marker of kidney injury. We tested whether molecular biomarkers of tubular injury measured at hospital admission were associated with AKI in those with COVID-19 infection.This is a prospective cohort observational study consisting of 444 consecutive SARS-CoV-2 patients enrolled in the Columbia University Emergency Department at the peak of New York's pandemic (March-April 2020). Urine and blood were collected simultaneously at hospital admission (median time: day 0, IQR 0-2 days) and urine biomarkers analyzed by ELISA and by a novel dipstick. Kidney biopsies were probed for biomarker RNA and for histopathologic acute tubular injury (ATI) scores.Admission uNGAL was associated with AKI diagnosis (267±301 vs. 96±139 ng/mL, P < 0.0001) and staging; uNGAL levels >150ng/mL demonstrated 80% specificity and 75% sensitivity to diagnose AKI-stage 2-3. Admission uNGAL quantitatively associated with prolonged AKI, dialysis, shock, prolonged hospitalization, and in-hospital death, even when admission SCr was not elevated. The risk of dialysis increased almost 4-fold per standard deviation of uNGAL independently of baseline SCr, co-morbidities, and proteinuria [OR(95%CI): 3.59 (1.83-7.45), P < 0.001]. In COVID-19 kidneys, NGAL mRNA expression broadened in parallel with severe histopathological injury (ATI). Conversely, low uNGAL levels at admission ruled out stage 2-3 AKI (NPV 0.95, 95%CI: 0.92-0.97) and the need for dialysis (NPV: 0.98, 95%CI: 0.96-0.99)). While proteinuria and uKIM-1 implicated tubular injury, neither were diagnostic of AKI stages.In COVID-19 patients, uNGAL quantitatively associated with histopathological injury (ATI), the loss of kidney function (AKI), and the severity of patient outcomes.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?