Puray-Chavez, M;Lee, N;Tenneti, K;Wang, Y;Vuong, HR;Liu, Y;Horani, A;Huang, T;Gunsten, SP;Case, JB;Yang, W;Diamond, MS;Brody, SL;Dougherty, J;Kutluay, SB;
PMID: 35604092 | DOI: 10.1128/mbio.00815-22
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribosomes within the slippery sequence on the frameshifting element. In a highly permissive cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. IMPORTANCE SARS-CoV-2 utilizes a number of strategies to modulate host responses to ensure efficient propagation. Here, we used ribosome profiling in SARS-CoV-2-infected cells to gain a deeper understanding of the translationally regulated events in infected cells. We found that although viral mRNAs are abundantly expressed, they are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy and alternative translation initiation sites that help increase the coding potential of its RNAs. In permissive cells, SARS-CoV-2 infection induced the translational repression of numerous innate immune mediators. Though the impact of SARS-CoV-2 on host mRNA translation was more subtle in primary airway cell cultures, we noted marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data provide new insight into how SARS-CoV-2 modulates innate host responses and highlight unique mechanisms for therapeutic intervention.
Charbogne P, Gardon O, Martín-García E, Keyworth HL, Matsui A, Mechling AE, Bienert T, Nasseef T, Robé A, Moquin L, Darcq E, Hamida SB, Robledo P, Matifas A, Befort K, Gavériaux-Ruff , Harsan LA, Von Everfeldt D, Hennig J, Gratton A, Kitchen I, Bailey A,
PMID: - | DOI: 10.1016/j.biopsych.2016.12.022
Background
Mu opioid receptors (MORs) are central to pain control, drug reward and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in GABAergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward.
Methods
We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in GABAergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology and microdialysis, probed neuronal activation by c-Fos immunohistochemistry and resting state-functional magnetic resonance imaging, and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food.
Results
Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area (VTA), local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures.
Conclusions
Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus beyond a well-established role in reward processing, operating at the level of local VTA neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.
Laboratory animal research
Lee, NY;Lee, YW;Hong, SM;On, D;Yoon, GM;An, SH;Nam, KT;Seo, JY;Shin, JS;Choi, YK;Oh, SH;Yun, JW;Lee, HY;Choi, KS;Seong, JK;Park, JW;
PMID: 37161442 | DOI: 10.1186/s42826-023-00157-4
The Omicron variant has become the most prevalent SARS-CoV-2 variant. Omicron is known to induce milder lesions compared to the original Wuhan strain. Fatal infection of the Wuhan strain into the brain has been well documented in COVID-19 mouse models and human COVID-19 cases, but apparent infections into the brain by Omicron have not been reported in human adult cases or animal models. In this study, we investigated whether Omicron could spread to the brain using K18-hACE2 mice susceptible to SARS-CoV-2 infection.K18-hACE2 mice were intranasally infected with 1 × 105 PFU of the original Wuhan strain and the Omicron variant of SARS-CoV-2. A follow-up was conducted 7 days post infection. All Wuhan-infected mice showed > 20% body weight loss, defined as the lethal condition, whereas two out of five Omicron-infected mice (40%) lost > 20% body weight. Histopathological analysis based on H&E staining revealed inflammatory responses in the brains of these two Omicron-infected mice. Immunostaining analysis of viral nucleocapsid protein revealed severe infection of neuron cells in the brains of these two Omicron-infected mice. Lymphoid depletion and apoptosis were observed in the spleen of Omicron-infected mice with brain infection.Lethal conditions, such as severe body weight loss and encephalopathy, can occur in Omicron-infected K18-hACE2 mice. Our study reports, for the first time, that Omicron can induce brain infection with lymphoid depletion in the mouse COVID-19 model.
Cong, Y;Mucker, EM;Perry, DL;Dixit, S;Kollins, E;Byrum, R;Huzella, L;Kim, R;Josleyn, M;Kwilas, S;Stefan, C;Shoemaker, CJ;Koehler, J;Coyne, S;Delp, K;Liang, J;Drawbaugh, D;Hischak, A;Hart, R;Postnikova, E;Vaughan, N;Asher, J;St Claire, M;Hanson, J;Schmaljohn, C;Eakin, AE;Hooper, JW;Holbrook, MR;
PMID: 37003305 | DOI: 10.1016/j.antiviral.2023.105589
The COVID-19 pandemic spurred the rapid development of a range of therapeutic antibody treatments. As part of the US government's COVID-19 therapeutic response, a research team was assembled to support assay and animal model development to assess activity for therapeutics candidates against SARS-CoV-2. Candidate treatments included monoclonal antibodies, antibody cocktails, and products derived from blood donated by convalescent patients. Sixteen candidate antibody products were obtained directly from manufacturers and evaluated for neutralization activity against the WA-01 isolate of SARS-CoV-2. Products were further tested in the Syrian hamster model using prophylactic (-24 h) or therapeutic (+8 h) treatment approaches relative to intranasal SARS-CoV-2 exposure. In vivo assessments included daily clinical scores and body weights. Viral RNA and viable virus titers were quantified in serum and lung tissue with histopathology performed at 3d and 7d post-virus-exposure. Sham-treated, virus-exposed hamsters showed consistent clinical signs with concomitant weight loss and had detectable viral RNA and viable virus in lung tissue. Histopathologically, interstitial pneumonia with consolidation was present. Therapeutic efficacy was identified in treated hamsters by the absence or diminution of clinical scores, body weight loss, viral loads, and improved semiquantitative lung histopathology scores. This work serves as a model for the rapid, systematic in vitro and in vivo assessment of the efficacy of candidate therapeutics at various stages of clinical development. These efforts provided preclinical efficacy data for therapeutic candidates. Furthermore, these studies were invaluable for the phenotypic characterization of SARS CoV-2 disease in hamsters and of utility to the broader scientific community.
Erjefält, JS;de Souza Xavier Costa, N;Jönsson, J;Cozzolino, O;Dantas, KC;Clausson, CM;Siddhuraj, P;Lindö, C;Alyamani, M;Lombardi, SCFS;Mendroni Júnior, A;Antonangelo, L;Faria, CS;Duarte-Neto, AN;de Almeida Monteiro, RA;Rebello Pinho, JR;Gomes-Gouvêa, MS;Verciano Pereira, R;Monteiro, JS;Setubal, JC;de Oliveira, EP;Theodoro Filho, J;Sanden, C;Orengo, JM;Sleeman, MA;da Silva, LFF;Saldiva, PHN;Dolhnikoff, M;Mauad, T;
PMID: 36027872 | DOI: 10.1016/j.ebiom.2022.104229
Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19.We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed.Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production.Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments.CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.
Motwani, R;Deshmukh, V;Kumar, A;Kumari, C;Raza, K;Krishna, H;
PMID: 35693050 | DOI: 10.53854/liim-3002-1
The mammalian placenta, which is responsible for bonding between the mother and the fetus, is one of the first organs to develop. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has caused a great threat to public health and affected almost all the organs including the placenta. Owing to limited available data on vertical transmission and pathological changes in the placenta of SARS-CoV-2 positive patients, we aim to review and summarize histopathological and ultrastructural changes in the placental tissue following SARS-CoV-2 infection. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 guidelines were used for review writing. Multiple studies have reported significant pathological changes in the placental tissue of SARS-CoV-2 positive mothers. On the other hand, some studies have demonstrated either no or very little involvement of the placental tissue. The most common pathological changes reported are fetal and maternal vascular malformation, villitis of unknown etiology, thrombus formation in the intervillous space and sub-chorionic space, and chorangiosis. Reports on vertical transmission are less in number. The observations of this review present a strong base for the pathological involvement of the placenta in SARS-CoV-2 infected mothers. However, a smaller number of original studies have been done until now, and most of them have small sample sizes and lack matched control groups, which are the big limitations for drawing an effective conclusion at this stage. Antenatal care can be improved by a better understanding of the correlation between maternal SARS-CoV-2 infection and placental pathology in COVID-19.
Liu, J;Wu, R;Seaman, R;Manz, KM;Johnson, B;Vu, J;Huang, Y;Zhang, Y;Robison, AJ;Neve, R;Grueter, BA;Dietz, D;Li, JX;
PMID: 35079125 | DOI: 10.1038/s41380-022-01448-3
Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.
Binding of SARS-CoV-2 to the avb6 Integrins May Promote Severe COVID in Patients with IPF
TP105. TP105 BASIC MECHANISMS OF LUNG INFECTIONS: FROM SARS-COV-2 TO INFLUENZA
Joseph, C;Peacock, T;Calver, J;John, A;Organ, L;Fainberg, H;Porte, J;Mukhopadhyay, S;Barton, L;Stroberg, E;Duval, E;Copin, M;Poissy, J;Steinestel, K;Tatler, A;Barclay, W;Jenkins, G;
| DOI: 10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4170
RATIONALE: Patients with idiopathic pulmonary fibrosis (IPF) have worse outcomes following COVID-19. SARSCoV-2 (2019-nCoV) spike protein (S1) harbors an RGD motif in its receptor-binding domain (RBD). Although SARS-CoV-2 is to exploit human Angiotensin Converting Enzyme-2 (ACE2) receptors for cell entry. Single Cell RNA-seq showed that normal lung expresses low levels of ACE2 with very low expression (1.5%) in Alveolar type 2 epithelial cells. It is possible that SARS-CoV-2 needs a cellular co-receptor, which could include integrins, to promote alveolar cell internalization and pneumonitis.METHODS: Solid-phase binding assays were used to investigate S1 binding to ACE2 or αv containing integrins. Pseudovirus entry assays were used to measure the internalization of SARS-CoV-2 into Human embryonic kidney 293T cells expressing different combinations of potential receptors. RNAscope was used to visualize the co-localization of SARS-CoV-2, ACE2, and integrin mRNAs. Immunohistochemistry was used to evaluate the expression of αvβ6 integrins and ACE2 in lung tissue.RESULTS: Binding assays demonstrated that the RGD containing αvβ3 and αvβ6 integrins bound robustly to the SARS-CoV-2 S1 subunit of Spike protein and overexpression of the αvβ6 integrin modestly augments ACE2 mediated SARS-CoV-2 pseudoviral entry into epithelial cells. In COVID-19 damaged lung ACE2 levels are low but the αvβ6 integrin levels are increased in alveolar epithelium whereas both ACE2 and αvβ6 integrin are increased in lung sections from idiopathic pulmonary fibrosis compared with normal lung samples. CONCLUSION: The SARS-CoV-2 S1 subunit can bind αvβ6 integrins augmenting ACE2-dependent internalization of pseudovirus. In IPF patients, ACE2 levels and αvβ6 integrin levels are increased. Increased binding of the SARS-CoV-2 to ACE2 and the αvβ6 integrin within fibrotic lung may explain the increased risk of severe COVID in patients with IPF.
Teague, C;Picone, J;Wright, W;Browne, C;Silva, G;Futamura, R;Minier-Toribio, A;Estill, M;Ramakrishnan, A;Martinez-Rivera, F;Godino, A;Parise, E;Schmidt, K;Pulido, N;Lorsch, Z;Kim, J;Shen, L;Neve, R;Dong, Y;Nestler, E;Hamilton, P;
| DOI: 10.1016/j.biopsych.2022.07.022
Background Over the course of chronic drug use, brain transcriptional neuroadaptation are thought to contribute to a change in drug use behavior over time. The function of the transcription factor CREB within the nucleus accumbens (NAc) has been well documented in opposing the rewarding properties of many classes of drugs, yet the gene targets through which CREB causally manifests these lasting neuroadaptations remain unknown. Here, we identify zinc finger protein 189 (Zfp189) as a CREB target gene that is transcriptionally responsive to acute and chronic cocaine use within mouse NAc. Methods To query the role of the CREB-Zfp189 interaction in cocaine use, we virally delivered modified CRISPR/dCas9 constructs, capable of selectively localizing CREB to the Zfp189 gene promoter in the NAc of mice. Results We observe that CREB binding to the Zfp189 promoter increases Zfp189 expression and diminishes the reinforcing responses to cocaine. We show further that NAc Zfp189 expression is increased within D1 medium spiny neurons (MSNs) in response to acute cocaine, but increased in both D1 and D2 MSNs in response to chronic cocaine. CREB-mediated induction of Zfp189 potentiates electrophysiological activity of D1 and D2 MSNs - recapitulating the known effect of CREB on these neurons. Lastly, targeting CREB to the Zfp189 promoter within NAc Drd2-expressing neurons, but not Drd1-expressing neurons, was sufficient to diminish cocaine-conditioned behaviors. Conclusions Together, these findings point to the CREB-Zfp189 interaction within NAc Drd2+ neurons as a molecular signature of chronic cocaine use that is causal in counteracting the reinforcing effects of cocaine.
Shanmugaraj, B;Khorattanakulchai, N;Panapitakkul, C;Malla, A;Im-Erbsin, R;Inthawong, M;Sunyakumthorn, P;Hunsawong, T;Klungthong, C;Reed, MC;Kemthong, T;Suttisan, N;Malaivijitnond, S;Srimangkornkaew, P;Klinkhamhom, A;Manopwisedjaroen, S;Thitithanyanont, A;Taychakhoonavudh, S;Phoolcharoen, W;
PMID: 35697573 | DOI: 10.1016/j.vaccine.2022.05.087
Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.
Takada, K;Shimodai-Yamada, S;Suzuki, M;Trinh, Q;Takano, C;Kawakami, K;Asai-Sato, M;Komatsu, A;Okahashi, A;Nagano, N;Misawa, T;Yamaguchi, K;Suzuki, T;Kawana, K;Morioka, I;Yamada, H;Hayakawa, S;Hao, H;Komine-Aizawa, S;
| DOI: 10.1016/j.placenta.2022.07.010
Although SARS-CoV-2 can infect human placental tissue, vertical transmission is rare. Therefore, the placenta may function as a barrier to inhibit viral transmission to the foetus, though the mechanisms remain unclear. In this study, we confirmed the presence of the SARS-CoV-2 genome in human placental tissue by in situ hybridization with antisense probes targeting the spike protein; tissue staining was much lower when using sense probes for the spike protein. To the best of our knowledge, this is the first evidence directly indicating inefficient viral replication in the SARS-CoV-2-infected placenta. Additional studies are required to reveal the detailed mechanisms.
Miller SM, Marcotulli D, Shen A, Zweifel LS.
PMID: 30804529 | DOI: 10.1038/s41593-019-0337-z
Avoidance of innate threats is often in conflict with motivations to engage in exploratory approach behavior. The neural pathways that mediate this approach-avoidance conflict are not well resolved. Here we isolated a population of dopamine D1 receptor (D1R)-expressing neurons within the posteroventral region of the medial amygdala (MeApv) in mice that are activated either during approach or during avoidance of an innate threat stimulus. Distinct subpopulations of MeApv-D1R neurons differentially innervate the ventromedial hypothalamus and bed nucleus of the stria terminalis, and these projections have opposing effects on investigation or avoidance of threatening stimuli. These projections are potently modulated through opposite actions of D1R signaling that bias approach behavior. These data demonstrate divergent pathways in the MeApv that can be differentially weighted toward exploration or evasion of threats.