ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Fluids and barriers of the CNS
2022 Aug 30
Errede, M;Annese, T;Petrosino, V;Longo, G;Girolamo, F;de Trizio, I;d'Amati, A;Uccelli, A;Kerlero de Rosbo, N;Virgintino, D;
PMID: 36042496 | DOI: 10.1186/s12987-022-00365-5
J Pathol.
2018 Jun 10
Kazantseva M, Eiholzer RA, Mehta S, Taha A, Bowie S, Roth I, Zhou J, Joruiz SM, Royds JA, Hung NA, Slatter TL, Braithwaite AW.
PMID: 29888503 | DOI: 10.1002/path.5111
As tumour protein 53 (p53) isoforms have tumour promoting, migration and inflammatory properties, this study investigated whether p53 isoforms contributed to glioblastoma progression. The expression levels of full-length TP53α (TAp53α) and six TP53 isoforms were quantitated by RT-qPCR in 89 glioblastomas and correlated with TP53 mutation status, tumour-associated macrophage content and various immune cell markers. Elevated levels of Δ133p53β mRNA characterised glioblastomas with increased CD163-positive macrophages and wild-type TP53. In situ based analyses found Δ133p53β expression localised to malignant cells in areas with increased hypoxia, and in cells with the monocyte chemoattractant protein C-C motif chemokine ligand 2 (CCL2) expressed. Tumours with increased Δ133p53β had increased numbers of cell positive for macrophage colony stimulating factor 1 receptor (CSF1R) and programmed death ligand 1 (PDL1). In addition, cells expressing a murine 'mimic' of Δ133p53 (Δ122p53) were resistant to temozolomide treatment and oxidative stress. Our findings suggest elevated Δ133p53β is an alternative pathway to TP53 mutation in glioblastoma that aids tumour progression by promoting an immunosuppressive and chemoresistant environment. Adding Δ133p53β to a TP53 signature along with TP53 mutation status will better predict treatment resistance in glioblastoma.
Molecular therapy : the journal of the American Society of Gene Therapy
2021 Jul 15
Han, B;Alonso-Valenteen, F;Wang, Z;Deng, N;Lee, TY;Gao, B;Zhang, Y;Xu, Y;Zhang, X;Billet, S;Fan, X;Shiao, S;Bhowmick, N;Medina-Kauwe, L;Giuliano, A;Cui, X;
PMID: 34274535 | DOI: 10.1016/j.ymthe.2021.07.003
Mucosal Immunol.
2018 Aug 16
Dunlap MD, Howard N, Das S, Scott N, Ahmed M, Prince O, Rangel-Moreno J, Rosa BA, Martin J, Kaushal D, Kaplan G, Mitreva M, Kim KW, Randolph GJ, Khader SA.
PMID: 30115997 | DOI: 10.1038/s41385-018-0071-y
C-C motif chemokine receptor 2 (CCR2) is a major chemokine axis that recruits myeloid cells including monocytes and macrophages. Thus far, CCR2-/- mice have not been found to be susceptible to infection with Mycobacterium tuberculosis (Mtb). Here, using a prototype W-Beijing family lineage 2 Mtb strain, HN878, we show that CCR2-/- mice exhibit increased susceptibility to tuberculosis (TB). Following exposure to Mtb HN878, alveolar macrophages (AMs) are amongst the earliest cells infected. We show that AMs accumulate early in the airways following infection and express CCR2. During disease progression, CCR2-expressing AMs exit the airways and localize within the TB granulomas. RNA-sequencing of sorted airway and non-airway AMs from infected mice show distinct gene expression profiles, suggesting that upon exit from airways and localization within granulomas, AMs become classically activated. The absence of CCR2+ cells specifically at the time of AM egress from the airways resulted in enhanced susceptibility to Mtb infection. Furthermore, infection with an Mtb HN878 mutant lacking phenolic glycolipid (PGL) expression still resulted in increased susceptibility in CCR2-/- mice. Together, these data show a novel rolefor CCR2 in protective immunity against clinically relevant Mtb infections.
Vet Pathol
2019 Mar 21
Palmer MV, Wiarda J, Kanipe C and Thacker TC
PMID: 30895908 | DOI: 10.1177/0300985819833454
Cell Rep.
2017 May 16
Liou GY, Bastea L, Fleming A, Döppler H, Edenfield BH, Dawson DW, Zhang L, Bardeesy N, Storz P.
PMID: 28514653 | DOI: 10.1016/j.celrep.2017.04.052
The contributions of the innate immune system to the development of pancreatic cancer are still ill defined. Inflammatory macrophages can initiate metaplasia of pancreatic acinar cells to a duct-like phenotype (acinar-to-ductal metaplasia [ADM]), which then gives rise to pancreatic intraepithelial neoplasia (PanIN) when oncogenic KRas is present. However, it remains unclear when and how this inflammatory macrophage population is replaced by tumor-promoting macrophages. Here, we demonstrate the presence of interleukin-13 (IL-13), which can convert inflammatory into Ym1+ alternatively activated macrophages, at ADM/PanIN lesions. We further show that Ym1+ macrophages release factors, such as IL-1ra and CCL2, to drive pancreatic fibrogenesis and tumorigenesis. Treatment of mice expressing oncogenic KRas under an acinar cell-specific promoter with a neutralizing antibody for IL-13 significantly decreased the accumulation of alternatively activated macrophages at these lesions, resulting in decreased fibrosis and lesion growth.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com