Personalized therapeutic strategies in HER2-driven gastric cancer
Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
Ughetto, S;Migliore, C;Pietrantonio, F;Apicella, M;Petrelli, A;D'Errico, L;Durando, S;Moya-Rull, D;Bellomo, SE;Rizzolio, S;Capelôa, T;Ribisi, S;Degiuli, M;Reddavid, R;Rapa, I;Fumagalli, U;De Pascale, S;Ribero, D;Baronchelli, C;Sgroi, G;Rausa, E;Baiocchi, GL;Molfino, S;Manenti, S;Bencivenga, M;Sacco, M;Castelli, C;Siena, S;Sartore-Bianchi, A;Tosi, F;Morano, F;Raimondi, A;Prisciandaro, M;Gloghini, A;Marsoni, S;Sottile, A;Sarotto, I;Sapino, A;Marchiò, C;Cassoni, P;Guarrera, S;Corso, S;Giordano, S;
PMID: 33755862 | DOI: 10.1007/s10120-021-01165-w
Trastuzumab is the only approved targeted therapy in patients with HER2-amplified metastatic gastric cancer (GC). Regrettably, in clinical practice, only a fraction of them achieves long-term benefit from trastuzumab-based upfront strategy. To advance precision oncology, we investigated the therapeutic efficacy of different HER2-targeted strategies, in HER2 "hyper"-amplified (≥ 8 copies) tumors. We undertook a prospective evaluation of HER2 targeting with monoclonal antibodies, tyrosine kinase inhibitors and antibody-drug conjugates, in a selected subgroup of HER2 "hyper"-amplified gastric patient-derived xenografts (PDXs), through the design of ad hoc preclinical trials. Despite the high level of HER2 amplification, trastuzumab elicited a partial response only in 2 out of 8 PDX models. The dual-HER2 blockade with trastuzumab plus either pertuzumab or lapatinib led to complete and durable responses in 5 (62.5%) out of 8 models, including one tumor bearing a concomitant HER2 mutation. In a resistant PDX harboring KRAS amplification, the novel antibody-drug conjugate trastuzumab deruxtecan (but not trastuzumab emtansine) overcame KRAS-mediated resistance. We also identified a HGF-mediated non-cell-autonomous mechanism of secondary resistance to anti-HER2 drugs, responsive to MET co-targeting. These preclinical randomized trials clearly indicate that in HER2-driven gastric tumors, a boosted HER2 therapeutic blockade is required for optimal efficacy, leading to complete and durable responses in most of the cases. Our results suggest that a selected subpopulation of HER2-"hyper"-amplified GC patients could strongly benefit from this strategy. Despite the negative results of clinical trials, the dual blockade should be reconsidered for patients with clearly HER2-addicted cancers.
Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Bearse, M;Hung, YP;Krauson, AJ;Bonanno, L;Boyraz, B;Harris, CK;Helland, TL;Hilburn, CF;Hutchison, B;Jobbagy, S;Marshall, MS;Shepherd, DJ;Villalba, JA;Delfino, I;Mendez-Pena, J;Chebib, I;Newton-Cheh, C;Stone, JR;
PMID: 33727695 | DOI: 10.1038/s41379-021-00790-1
COVID-19 has been associated with cardiac injury and dysfunction. While both myocardial inflammatory cell infiltration and myocarditis with myocyte injury have been reported in patients with fatal COVID-19, clinical-pathologic correlations remain limited. The objective was to determine the relationships between cardiac pathological changes in patients dying from COVID-19 and cardiac infection by SARS-CoV-2, laboratory measurements, clinical features, and treatments. In a retrospective study, 41 consecutive autopsies of patients with fatal COVID-19 were analyzed for the associations between cardiac inflammation, myocarditis, cardiac infection by SARS-CoV-2, clinical features, laboratory measurements, and treatments. Cardiac infection was assessed by in situ hybridization and NanoString transcriptomic profiling. Cardiac infection by SARS-CoV-2 was present in 30/41 cases: virus+ with myocarditis (n = 4), virus+ without myocarditis (n = 26), and virus- without myocarditis (n = 11). In the cases with cardiac infection, SARS-CoV-2+ cells in the myocardium were rare, with a median density of 1 cell/cm2. Virus+ cases showed higher densities of myocardial CD68+ macrophages and CD3+ lymphocytes, as well as more electrocardiographic changes (23/27 vs 4/10; P = 0.01). Myocarditis was more prevalent with IL-6 blockade than with nonbiologic immunosuppression, primarily glucocorticoids (2/3 vs 0/14; P = 0.02). Overall, SARS-CoV-2 cardiac infection was less prevalent in patients treated with nonbiologic immunosuppression (7/14 vs 21/24; P = 0.02). Myocardial macrophage and lymphocyte densities overall were positively correlated with the duration of symptoms but not with underlying comorbidities. In summary, cardiac infection with SARS-CoV-2 is common among patients dying from COVID-19 but often with only rare infected cells. Cardiac infection by SARS-CoV-2 is associated with more cardiac inflammation and electrocardiographic changes. Nonbiologic immunosuppression is associated with lower incidences of myocarditis and cardiac infection by SARS-CoV-2.
Formation and immunomodulatory function of meningeal B-cell aggregates in progressive CNS autoimmunity
Brain : a journal of neurology
Mitsdörffer, M;Di Liberto, G;Dötsch, S;Sie, C;Wagner, I;Pfaller, M;Kreutzfeldt, M;Fräßle, S;Aly, L;Knier, B;Busch, DH;Merkler, D;Korn, T;
PMID: 33693558 | DOI: 10.1093/brain/awab093
Meningeal B lymphocyte aggregates have been described in autopsy material of patients with chronic Multiple Sclerosis. The presence of meningeal B cell aggregates has been correlated with worse disease. However, the functional role of these meningeal B cell aggregates is not understood. Here, we use a mouse model of Multiple Sclerosis, the spontaneous opticospinal encephalomyelitis model, which is built on the double transgenic expression of myelin oligodendrocyte glycoprotein-specific T cell- and B cell-receptors, to show that the formation of meningeal B cell aggregates is dependent on the expression of α4 integrins by antigen-specific T cells. T cell-conditional genetic ablation of α4 integrins in opticospinal encephalomyelitis mice impaired the formation of meningeal B cell aggregates, and surprisingly, led to a higher disease incidence as compared to opticospinal encephalomyelitis mice with α4 integrin-sufficient T cells. B cell-conditional ablation of α4 integrins in opticospinal encephalomyelitis mice resulted in the entire abrogation of the formation of meningeal B cell aggregates, and opticospinal encephalomyelitis mice with α4 integrin-deficient B cells suffered from a higher disease burden than regular opticospinal encephalomyelitis mice. While anti-CD20 antibody-mediated systemic depletion of B cells in opticospinal encephalomyelitis mice after onset of disease failed to efficiently decrease meningeal B cell aggregates without significantly modulating disease progression, treatment with anti-CD19 chimeric antigen receptor-T cells eliminated meningeal B cell aggregates and exacerbated clinical disease in opticospinal encephalomyelitis mice. Since about 20 percent of B cells in organised meningeal B cell aggregates produced either IL-10 or IL-35, we propose that meningeal B cell aggregates might also have an immunoregulatory function as to the immunopathology in adjacent spinal cord white matter. The immunoregulatory function of meningeal B cell aggregates needs to be considered when designing highly efficient therapies directed against meningeal B cell aggregates for clinical application in Multiple Sclerosis.
Alteration of Colonic Mucin Composition and Cytokine Expression in Acute Swine Dysentery
Lin, SJ;Arruda, B;Burrough, E;
PMID: 33686884 | DOI: 10.1177/0300985821996657
Swine dysentery (SD) is an enteric disease associated with strongly β-hemolytic Brachyspira spp. that cause mucohemorrhagic diarrhea primarily in grower-finisher pigs. We characterized alteration of colonic mucin composition and local cytokine expression in the colon of pigs with acute SD after B. hyodysenteriae (Bhyo) infection and fed either a diet containing 30% distillers dried grains with solubles (DDGS) or a control diet. Colonic tissue samples from 9 noninoculated pigs (Control, N = 4; DDGS, N = 5) and 10 inoculated pigs experiencing acute SD (Bhyo, N = 4; Bhyo-DDGS, N = 6) were evaluated. At the apex of the spiral colon, histochemical staining with high-iron diamine-Alcian blue revealed increased sialomucin (P = .008) and decreased sulfomucin (P = .027) in Bhyo pigs relative to controls, with a dietary effect for sulfomucin. Noninoculated pigs fed DDGS had greater expression of sulfomucin (P = .002) compared to pigs fed the control diet. Immunohistochemically, there was de novo expression of mucin 5AC (MUC5AC) in the Bhyo group while mucin 2 (MUC2) expression was not significantly different between groups. RNA in situ hybridization to detect the pro-inflammatory cytokine IL-1β often showed increased expression in the Bhyo group although without statistical significance, and this was not correlated with MUC5AC or MUC2 expression, suggesting IL-1β is not a major regulator of their secretion in acute SD. Expression of the anti-inflammatory cytokine TGF-β1 was significantly suppressed in the Bhyo group compared to controls (P = .005). This study reveals mucin and cytokine alterations in the colon of pigs with experimentally induced SD and related dietary effects of DDGS.
Orexin-A differentially modulates inhibitory and excitatory synaptic transmission in rat inner retina
Ruan, HZ;Wang, LQ;Yuan, F;Weng, SJ;Zhong, YM;
PMID: 33582153 | DOI: 10.1016/j.neuropharm.2021.108492
In this work, modulation by orexin-A of the release of glutamate and GABA from bipolar and amacrine cells respectively was studied by examining the effects of the neuropeptide on miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of rat retinal ganglion cells (GCs). Using RNAscope in situ hybridization in combination with immunohistochemistry, we showed positive signals for orexin receptor-1 (OX1R) mRNA in the bipolar cell terminals and those for orexin receptor-2 (OX2R) mRNA in the amacrine cell terminals. With whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that application of orexin-A reduced the interevent interval of mEPSCs of GCs through OX1R. However, it increased the interevent interval of mIPSCs, mediated by GABAA receptors, through OX2R. Furthermore, orexin-A-induced reduction of mEPSC interevent interval was abolished by the application of PI-PLC inhibitors or PKC inhibitors. In contrast, orexin-A-induced increase of GABAergic mIPSC interevent interval was mimicked by 8-Br-cAMP or an adenylyl cyclase activator, but was eliminated by PKA antagonists. Finally, application of nimodipine, an L-type Ca2+ channel blocker, increased both mEPSC and mIPSC interevent interval, and co-application of orexin-A no longer changed the mEPSCs and mIPSCs. We conclude that orexin-A increases presynaptic glutamate release onto GCs by activating L-type Ca2+ channels in bipolar cells, a process that is mediated by an OX1R/PI-PLC/PKC signaling pathway. However, orexin-A decreases presynaptic GABA release onto GCs by inhibiting L-type Ca2+ channels in amacrine cells, a process that is mediated by an OX2R/cAMP-PKA signaling pathway.
Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis
Mehta, AR;Gregory, JM;Dando, O;Carter, RN;Burr, K;Nanda, J;Story, D;McDade, K;Smith, C;Morton, NM;Mahad, DJ;Hardingham, GE;Chandran, S;Selvaraj, BT;
PMID: 33398403 | DOI: 10.1007/s00401-020-02252-5
Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.
Frontiers in pharmacology
Berezin, CT;Bergum, N;Torres Lopez, GM;Vigh, J;
PMID: 37388441 | DOI: 10.3389/fphar.2023.1206104
Opioids are effective analgesics for treating moderate to severe pain, however, their use must be weighed against their dangerous side effects. Investigations into opioid pharmacokinetics provide crucial information regarding both on- and off-target drug effects. Our recent work showed that morphine deposits and accumulates in the mouse retina at higher concentrations than in the brain upon chronic systemic exposure. We also found reduced retinal expression of P-glycoprotein (P-gp), a major opioid extruder at the blood-brain barrier (BBB). Here, we systematically interrogated the expression of three putative opioid transporters at the blood-retina barrier (BRB): P-gp, breast cancer resistance protein (Bcrp) and multidrug resistance protein 2 (Mrp2). Using immunohistochemistry, we found robust expression of P-gp and Bcrp, but not Mrp2, at the inner BRB of the mouse retina. Previous studies have suggested that P-gp expression may be regulated by sex hormones. However, upon acute morphine treatment we found no sex differences in morphine deposition levels in the retina or brain, nor on transporter expression in the retinas of males and females with a high or low estrogen:progesterone ratio. Importantly, we found that P-gp, but not Bcrp, expression significantly correlated with morphine concentration in the retina, suggesting P-gp is the predominant opioid transporter at the BRB. In addition, fluorescence extravasation studies revealed that chronic morphine treatment did not alter the permeability of either the BBB or BRB. Together, these data suggest that reduced P-gp expression mediates retinal morphine accumulation upon systemic delivery, and in turn, potential effects on circadian photoentrainment.
Cancer research communications
Morikawa, A;Li, J;Ulintz, P;Cheng, X;Apfel, A;Robinson, D;Hopkins, A;Kumar-Sinha, C;Wu, YM;Serhan, H;Verbal, K;Thomas, D;Hayes, DF;Chinnaiyan, AM;Baladandayuthapani, V;Heth, J;Soellner, MB;Merajver, SD;Merrill, N;
PMID: 37377606 | DOI: 10.1158/2767-9764.CRC-22-0492
The development of novel therapies for brain metastases is an unmet need. Brain metastases may have unique molecular features that could be explored as therapeutic targets. A better understanding of the drug sensitivity of live cells coupled to molecular analyses will lead to a rational prioritization of therapeutic candidates. We evaluated the molecular profiles of 12 breast cancer brain metastases (BCBM) and matched primary breast tumors to identify potential therapeutic targets. We established six novel patient-derived xenograft (PDX) from BCBM from patients undergoing clinically indicated surgical resection of BCBM and used the PDXs as a drug screening platform to interrogate potential molecular targets. Many of the alterations were conserved in brain metastases compared with the matched primary. We observed differential expressions in the immune-related and metabolism pathways. The PDXs from BCBM captured the potentially targetable molecular alterations in the source brain metastases tumor. The alterations in the PI3K pathway were the most predictive for drug efficacy in the PDXs. The PDXs were also treated with a panel of over 350 drugs and demonstrated high sensitivity to histone deacetylase and proteasome inhibitors. Our study revealed significant differences between the paired BCBM and primary breast tumors with the pathways involved in metabolisms and immune functions. While molecular targeted drug therapy based on genomic profiling of tumors is currently evaluated in clinical trials for patients with brain metastases, a functional precision medicine strategy may complement such an approach by expanding potential therapeutic options, even for BCBM without known targetable molecular alterations.Examining genomic alterations and differentially expressed pathways in brain metastases may inform future therapeutic strategies. This study supports genomically-guided therapy for BCBM and further investigation into incorporating real-time functional evaluation will increase confidence in efficacy estimations during drug development and predictive biomarker assessment for BCBM.
The American journal of pathology
Lee, YJ;Seok, SH;Lee, NY;Choi, HJ;Lee, YW;Chang, HJ;Hwang, JY;On, DI;Noh, HA;Lee, SB;Kwon, HK;Yun, JW;Shin, JS;Seo, JY;Nam, KT;Lee, H;Lee, HY;Park, JW;Seong, JK;
PMID: 37024046 | DOI: 10.1016/j.ajpath.2023.03.008
The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.
Park, S;Dahn, R;Kurt, E;Presle, A;VandenHeuvel, K;Moravec, C;Jambhekar, A;Olukoga, O;Shepherd, J;Echard, A;Blower, M;Skop, A;
| DOI: 10.2139/ssrn.4318824
The midbody (MB) is a transient structure at the spindle midzone that is required for cytokinesis, the terminal stage of cell division. Long ignored as a vestigial remnant of cytokinesis, we now know MBs are released post-abscission as extracellular vesicles called MB remnants (MBRs) and can modulate cell proliferation, fate decisions, tissue polarity, neuronal architecture, and tumorigenic behavior. Here, we demonstrate that the MB matrix—the structurally amorphous MB core of unknown composition—is the site of ribonucleoprotein assembly and is enriched in mRNAs that encode proteins involved in cell fate, oncogenesis, and pluripotency, that we are calling the MB granule. Using a quantitative transcriptomic approach, we identified a population of mRNAs enriched in mitotic MBs and confirmed their presence in signaling MBR vesicles released by abscission. The MB granule is unique in that it is translationally active, contains both small and large ribosomal subunits, and has both membrane-less and membranebound states. Both MBs and post-abscission MBRs are sites of spatiotemporally regulated translation, which is initiated when nascent daughter cells re-enter G1 and continues after extracellular release. We demonstrate that the MB is the assembly site of an RNP granule. MKLP1 and ARC are necessary for the localization and translation of RNA in the MB dark zone, whereas ESCRT-III was necessary to maintain translation levels in the MB. Our data suggest a model in which the MB functions as a novel RNA-based organelle with a uniquely complex life cycle. We present a model in which the assembly and transfer of RNP complexes are central to post-mitotic MBR function and suggest the MBR serves as a novel mode of RNA-based intercellular communication with a defined biogenesis that is coupled to abscission, and inherently links cell division status with signaling capacity. To our knowledge, this is the first example of an autonomous extracellular vesicle with active translation activity.
Methods in Ecology and Evolution
Graßle, T;Crockford, C;Eichner, C;
| DOI: 10.1111/2041-210x.14039/v1/review3
The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat.The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites.Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates.Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments
Frontiers in bioengineering and biotechnology
Pietersz, KL;Plessis, FD;Pouw, SM;Liefhebber, JM;van Deventer, SJ;Martens, GJM;Konstantinova, PS;Blits, B;
PMID: 34414171 | DOI: 10.3389/fbioe.2021.679483
Of the adeno-associated viruses (AAVs), AAV9 is known for its capability to cross the blood-brain barrier (BBB) and can, therefore, be used as a noninvasive method to target the central nervous system. Furthermore, the addition of the peptide PhP.B to AAV9 increases its transduction across the BBB by 40-fold. Another neurotropic serotype, AAV5, has been shown as a gene therapeutic delivery vehicle to ameliorate several neurodegenerative diseases in preclinical models, but its administration requires invasive surgery. In this study, AAV9-PhP.B and AAV5-PhP.B were designed and produced in an insect cell-based system. To AAV9, the PhP.B peptide TLAVPFK was added, whereas in AAV5-PhP.B (AQTLAVPFKAQAQ), with AQ-AQAQ sequences used to swap with the corresponding sequence of AAV5. The addition of PhP.B to AAV5 did not affect its capacity to cross the mouse BBB, while increased transduction of liver tissue was observed. Then, intravenous (IV) and intrastriatal (IStr) delivery of AAV9-PhP.B and AAV5 were compared. For AAV9-PhP.B, similar transduction and expression levels were achieved in the striatum and cortex, irrespective of the delivery method used. IStr administration of AAV5 resulted in significantly higher amounts of vector DNA and therapeutic miRNA in the target regions such as striatum and cortex when compared with an IV administration of AAV9-PhP.B. These results illustrate the challenge in developing a vector that can be delivered noninvasively while achieving a transduction level similar to that of direct administration of AAV5. Thus, for therapeutic miRNA delivery with high local expression requirements, intraparenchymal delivery of AAV5 is preferred, whereas a humanized AAV9-PhP.B may be useful when widespread brain (and peripheral) transduction is needed.