IQGAP3, a YAP Target, Is Required for Proper Cell-Cycle Progression and Genome Stability
Molecular cancer research : MCR
Leone, M;Cazorla-Vázquez, S;Ferrazzi, F;Wiederstein, JL;Gründl, M;Weinstock, G;Vergarajauregui, S;Eckstein, M;Krüger, M;Gaubatz, S;Engel, FB;
PMID: 34183451 | DOI: 10.1158/1541-7786.MCR-20-0639
Controlling cell proliferation is critical for organism development, tissue homeostasis, disease, and regeneration. IQGAP3 has been shown to be required for proper cell proliferation and migration, and is associated to a number of cancers. Moreover, its expression is inversely correlated with the overall survival rate in the majority of cancers. Here, we show that IQGAP3 expression is elevated in cervical cancer and that in these cancers IQGAP3 high expression is correlated with an increased lethality. Furthermore, we demonstrate that IQGAP3 is a target of YAP, a regulator of cell cycle gene expression. IQGAP3 knockdown resulted in an increased percentage of HeLa cells in S phase, delayed progression through mitosis, and caused multipolar spindle formation and consequentially aneuploidy. Protein-protein interaction studies revealed that IQGAP3 interacts with MMS19, which is known in Drosophila to permit, by competitive binding to Xpd, Cdk7 to be fully active as a Cdk-activating kinase (CAK). Notably, IQGAP3 knockdown caused decreased MMS19 protein levels and XPD knockdown partially rescued the reduced proliferation rate upon IQGAP3 knockdown. This suggests that IQGAP3 modulates the cell cycle via the MMS19/XPD/CAK axis. Thus, in addition to governing proliferation and migration, IQGAP3 is a critical regulator of mitotic progression and genome stability. IMPLICATIONS: Our data indicate that, while IQGAP3 inhibition might be initially effective in decreasing cancer cell proliferation, this approach harbors the risk to promote aneuploidy and, therefore, the formation of more aggressive cancers.
What do we know about porcine circovirus 3 (PCV3) diagnosis so far?: A review
Transboundary and emerging diseases
Tan, CY;Lin, CN;Ooi, PT;
PMID: 34110095 | DOI: 10.1111/tbed.14185
Porcine circovirus 3 (PCV3) was first discovered in 2016, almost concomitantly by two groups of researchers in the United States. The novel case was reported in a group of sows with chronic reproductive problems with clinical presentation alike porcine dermatitis and nephropathy syndrome (PDNS), where metagenomic sequencing revealed a genetically divergent porcine circovirus designated PCV3. The discovery of PCV3 in a PDNS case, which used to be considered as part of PCVAD attributed to PCV2 (porcine circovirus 2), has garnered attention and effort in further research of the novel virus. Just when an infectious molecular DNA clone of PCV3 has been developed and successfully used in an in vivo pathogenicity study, yet another novel PCV strain surfaced, designated PCV4 (porcine circovirus 4). So far, PCV3 has been reported in domestic swine population globally at low to moderate prevalence, from almost all sample types including organ tissues, faecal, semen and colostrum samples. PCV3 has been associated with a myriad of clinical presentations, from PDNS to porcine respiratory disease complex (PRDC). This review paper summarizes the studies on PCV3 to date, with focus on diagnosis.
PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer
Galbraith, LCA;Mui, E;Nixon, C;Hedley, A;Strachan, D;MacKay, G;Sumpton, D;Sansom, OJ;Leung, HY;Ahmad, I;
PMID: 33654198 | DOI: 10.1038/s41388-021-01707-7
Peroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.
White matter aging drives microglial diversity
Safaiyan, S;Besson-Girard, S;Kaya, T;Cantuti-Castelvetri, L;Liu, L;Ji, H;Schifferer, M;Gouna, G;Usifo, F;Kannaiyan, N;Fitzner, D;Xiang, X;Rossner, MJ;Brendel, M;Gokce, O;Simons, M;
PMID: 33606969 | DOI: 10.1016/j.neuron.2021.01.027
Aging results in gray and white matter degeneration, but the specific microglial responses are unknown. Using single-cell RNA sequencing from white and gray matter separately, we identified white matter-associated microglia (WAMs), which share parts of the disease-associated microglia (DAM) gene signature and are characterized by activation of genes implicated in phagocytic activity and lipid metabolism. WAMs depend on triggering receptor expressed on myeloid cells 2 (TREM2) signaling and are aging dependent. In the aged brain, WAMs form independent of apolipoprotein E (APOE), in contrast to mouse models of Alzheimer's disease, in which microglia with the WAM gene signature are generated prematurely and in an APOE-dependent pathway similar to DAMs. Within the white matter, microglia frequently cluster in nodules, where they are engaged in clearing degenerated myelin. Thus, WAMs may represent a potentially protective response required to clear degenerated myelin accumulating during white matter aging and disease.
Targeting barrel field spiny stellate cells using a vesicular monoaminergic transporter 2-Cre mouse line
Freitag, FB;Ahemaiti, A;Weman, HM;Ambroz, K;Lagerström, MC;
PMID: 33547358 | DOI: 10.1038/s41598-021-82649-8
Rodent primary somatosensory cortex (S1) is organized in defined layers, where layer IV serves as the main target for thalamocortical projections. Serotoninergic signaling is important for the organization of thalamocortical projections and consequently proper barrel field development in rodents, and the vesicular monoamine transporter 2 (VMAT2) can be detected locally in layer IV S1 cortical neurons in mice as old as P10, but the identity of the Vmat2-expressing neurons is unknown. We here show that Vmat2 mRNA and also Vmat2-Cre recombinase are still expressed in adult mice in a sub-population of the S1 cortical neurons in the barrel field. The Vmat2-Cre cells showed a homogenous intrinsically bursting firing pattern determined by whole-cell patch-clamp, localized radial densely spinous basal dendritic trees and almost exclusively lack of apical dendrite, indicative of layer IV spiny stellate cells. Single cell mRNA sequencing analysis showed that S1 cortical Vmat2-Cre;tdTomato cells express the layer IV marker Rorb and mainly cluster with layer IV neurons, and RNAscope analysis revealed that adult Vmat2-Cre neurons express Vmat2 and vesicular glutamate transporter 1 (Vglut1) and Vglut2 mRNA to a high extent. In conclusion, our analysis shows that cortical Vmat2 expression is mainly confined to layer IV neurons with morphological, electrophysiological and transcriptional characteristics indicative of spiny stellate cells.
Brahma-Related Gene-1 (BRG1) promotes the malignant phenotype of glioblastoma cells
Journal of cellular and molecular medicine
Wang, Y;Yang, CH;Schultz, AP;Sims, MM;Miller, DD;Pfeffer, LM;
PMID: 33528916 | DOI: 10.1111/jcmm.16330
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumour that is resistant to existing therapeutics. Identifying signalling pathways deregulated in GBM that can be targeted therapeutically is critical to improve the present dismal prognosis for GBM patients. In this report, we have identified that the BRG1 (Brahma-Related Gene-1) catalytic subunit of the SWI/SNF chromatin remodelling complex promotes the malignant phenotype of GBM cells. We found that BRG1 is ubiquitously expressed in tumour tissue from GBM patients, and high BRG1 expression levels are localized to specific brain tumour regions. Knockout (KO) of BRG1 by CRISPR-Cas9 gene editing had minimal effects on GBM cell proliferation, but significantly inhibited GBM cell migration and invasion. BRG1-KO also sensitized GBM cells to the anti-proliferative effects of the anti-cancer agent temozolomide (TMZ), which is used to treat GBM patients in the clinic, and selectively altered STAT3 tyrosine phosphorylation and gene expression. These results demonstrate that BRG-1 promotes invasion and migration, and decreases chemotherapy sensitivity, indicating that it functions in an oncogenic manner in GBM cells. Taken together, our findings suggest that targeting BRG1 in GBM may have therapeutic benefit in the treatment of this deadly form of brain cancer.
Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming
Wang, Y;Tong, C;Dai, H;Wu, Z;Han, X;Guo, Y;Chen, D;Wei, J;Ti, D;Liu, Z;Mei, Q;Li, X;Dong, L;Nie, J;Zhang, Y;Han, W;
PMID: 33462245 | DOI: 10.1038/s41467-020-20696-x
Insufficient eradication capacity and dysfunction are common occurrences in T cells that characterize cancer immunotherapy failure. De novo DNA methylation promotes T cell exhaustion, whereas methylation inhibition enhances T cell rejuvenation in vivo. Decitabine, a DNA methyltransferase inhibitor approved for clinical use, may provide a means of modifying exhaustion-associated DNA methylation programmes. Herein, anti-tumour activities, cytokine production, and proliferation are enhanced in decitabine-treated chimeric antigen receptor T (dCAR T) cells both in vitro and in vivo. Additionally, dCAR T cells can eradicate bulky tumours at a low-dose and establish effective recall responses upon tumour rechallenge. Antigen-expressing tumour cells trigger higher expression levels of memory-, proliferation- and cytokine production-associated genes in dCAR T cells. Tumour-infiltrating dCAR T cells retain a relatively high expression of memory-related genes and low expression of exhaustion-related genes in vivo. In vitro administration of decitabine may represent an option for the generation of CAR T cells with improved anti-tumour properties.
British journal of pharmacology
Gupte, SA;Bakshi, CS;Blackham, E;Duhamel, GE;Jordan, A;Salgame, P;D'silva, M;Khan, MY;Nadler, J;Gupte, R;
PMID: 37259182 | DOI: 10.1111/bph.16155
COVID-19 infections caused by SARS-CoV-2 disseminate through human-to-human transmission can evoke severe inflammation. Treatments to reduce the SARS-CoV-2-associated inflammation are needed and are the focus of much research. In this study, we investigated the effect of N-Ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl] urea (NEOU), a novel 17α-ketosteroid derivative, on the severity of COVID-19 infections.Studies were conducted in SARS-CoV-2-infected K18-hACE2 mice.SARS-CoV-2-infected K18-hACE2 mice developed severe inflammatory crises and immune responses along with up-regulation of genes in associated signaling pathways in male more than female mice. Notably, SARS-CoV-2 infection down-regulated genes encoding drug metabolizing cytochrome P450 enzymes in male but not female mice. Treatment with NEOU (1 mg/kg/day) 24 or 72 h post-viral infection alleviated lung injury by decreasing expression of genes encoding inflammatory cytokines and chemokines while increasing expression of genes encoding immunoglobins. In situ hybridization using RNA scope probes and immunohistochemical assays revealed that NEOU increased resident CD169+ immunoregulatory macrophages and IBA-1 immunoreactive macrophage-dendritic cells within alveolar spaces in the lungs of infected mice. Consequentially, NEOU reduced morbidity more prominently in male than female mice. However, NEOU increased median survival time and accelerated recovery from infection by 6 days in both males and females.These findings demonstrate that SARS-CoV-2 exhibits gender bias by differentially regulating genes encoding inflammatory cytokines, immunogenic factors, and drug-metabolizing enzymes, in male versus female mice. Most importantly, we identified a novel 17α-ketosteroid that reduces the severity of COVID-19 infection and could be beneficial for reducing impact of COVID-19.This article is protected by
Hepatology (Baltimore, Md.)
Wu, Y;Hao, X;Wei, H;Sun, R;Chen, Y;Tian, Z;
PMID: 35938354 | DOI: 10.1002/hep.32715
Chronic hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC) and is a serious health problem in China, East Asia, and North African countries. Effective treatment of HBV-related HCC is currently unavailable. This study evaluated the therapeutic potential of TIGIT blockade in HBV-related HCC.A mouse model of spontaneous HBV-related HCC was generated by replacing wild-type hepatocytes with HBsAg+ hepatocytes (namely HBs-HepR mice). The tumors in HBs-HepR mice were inflammation-associated HCC, similar to HBV-related HCC in patients, which was distinguished from other HCC mouse models, such as diethylnitrosamine (DEN)-induced HCC, Tak1-knockout-induced HCC, HCC in stelic animal model (STAM), or nonalcoholic steatohepatitis (NASH)-induced HCC. HCC in HBs-HepR mice was characterized by an increased number of CD8+ T cells whereas the production of IL-2, TNF-α, and IFN-γ by intrahepatic CD8+ T cells was decreased. Increased expression of TIGIT on CD8+ T cells was responsible for functional exhaustion. The therapeutic effect of TIGIT blockade was investigated at the early and middle stages of HCC progression in HBs-HepR mice. TIGIT blockade reinvigorated intrahepatic CD8+ T cells with increased TNF-α and IFN-γ production and an increased number of CD8+ T cells in tumors, thereby slowing the development of HCC in HBs-HepR mice. Blocking PD-L1 did not show direct therapeutic effects or synergize with TIGIT blockade.Blockade of TIGIT alone enhanced the anti-tumor activity of CD8+ T cells during the progression of HBV-related HCC in a spontaneous HCC mouse model.This article is protected by
Aging changes in bladder HCN are associated with increasing heterogeneity of adrenergic/mucosal influence on detrusor control in the mouse
The journals of gerontology. Series A, Biological sciences and medical sciences
Hardy, CC;Al-Naggar, IM;Kuo, CL;Kuchel, GA;Smith, PP;
PMID: 33693872 | DOI: 10.1093/gerona/glab070
A geroscience-informed approach to the increasing prevalence of bladder control problems in older adults requires understanding the impact of aging on dynamic mechanisms that ensure resilience in response to stressors challenging asymptomatic voluntary control over urine storage and voiding. Bladder control is predicated on sensory neural information about bladder volume. Modulation of volume-induced bladder wall tensions by autonomic and mucosal factors controls neural sensitivity to bladder volume. We hypothesized that HCN (hyperpolarization-activated cyclic nucleotide-gated) channels integrate these factors and thereby mediate adrenergic detrusor tension control. Furthermore, loss of HCN expression compromises that integration, and could result in loss of precision of detrusor control. Using a lifespan mouse model, RT-qPCR and pharmacologic studies in pre-tensioned intact and mucosa-denuded bladder strips were made. The dominant hcn1 expression declines with maturation and aging, however aging is also associated with increased variance around mean values. In strips from mature animals, isoproterenol had less effect in denuded muscle strips than in intact strips, and HCN blockade diminished isoproterenol responsiveness. With aging, variances about mean response values significantly increased, paralleling hcn1 expression. Our findings support a role for HCN in providing neuroendocrine/paracrine integration and suggest an association of increased heterogeneity of HCN expression in aging with reductions in response precision to neuroendocrine control. The functional implication is an increased risk of dysfunction of brainstem/bladder regulation of neuronal sensitivity to bladder volume. This supports the clinical model of the aging bladder phenotype as an expression of loss of resilience, and not as emerging bladder pathology with aging.
Geron, M;Tassou, A;Berg, D;Shuster, A;Liu-Chen, L;Scherrer, G;
| DOI: 10.1016/j.jpain.2023.02.114
Targeting specific opioid receptor types in distinct sensory neurons could lead to safer and more effective treatments against pain. However, the extent to which different DRG neurons that express opioid receptors (MOR, DOR, KOR) innervate distinct organs, and what sensory information is encoded by these neurons, represent long-standing questions in the field. To fill this knowledge gap, we utilized novel knock-in mouse lines in which the DNA recombinases Cre and/or Flp are expressed in opioid receptor-positive DRG neurons. We injected adeno-associated viruses to express tdTomato and analyzed the organization of DRG axon terminals in peripheral tissues using tissue clearing and immunostaining protocols. In hairy skin, we observed circumferential nerve endings around hair follicles that are either MOR+ or DOR+. However, DOR+ circumferential endings were also NFH+ whereas MOR+ circumferential endings were not, suggesting that MOR is expressed by high-threshold mechanoreceptors, while DOR is expressed by low-threshold mechanoreceptors activated by stroking of the skin. In glabrous skin, we found a similar divergent organization, with MOR+ and DOR+ axon terminals co-expressing CRGP and NFH, respectively. In the colon, we observed innervation by both KOR+ and MOR+ axons whereas, in the muscle (soleus) and kidney, we found axons that are either MOR+, DOR+, or KOR+. Remarkably, these MOR+, DOR+, or KOR+ axons innervate different sub-regions within these organs and form distinct nerve-ending structures. Collectively, our findings show that MOR+, DOR+, and KOR+ DRG neurons are expressed in largely non-overlapping DRG neuron types that distinctly innervate tissues and presumably differently contribute to sensory perception. National Institutes of Health grant R01DA044481 New York Stem Cell Foundation.
Almalki, A;Arjun, S;Jasem, H;Yellon, DM;Bell, R;
| DOI: 10.1161/circ.146.suppl_1.14127
Introduction: Hyperglycemia is a common finding in ACS patients in both diabetic and non-diabetic, it is considered a powerful predictor of prognosis and mortality. The role of hyperglycemia in ischemia-reperfusion injury is not fully understood, whether the Sodium Glucose Co-Transporter 1(SGLT1) plays a role in increase injury, before and/or after reperfusion, remains to be elucidated. SGLT2 inhibitors clinical trials have shown significant improvements in cardiovascular outcomes in diabetic and non-diabetic, yet the mechanism is not fully understood and whether SGLT1 plays a role in infarct augmentation remains to be elucidated. Hypothesis: High glucose at reperfusion leads to excess myocardial injury and the increased injury is mediated through the activity of SGLT1. Methods: RT-PCR and in-situ hybridization (RNAScope) combined with Immunofluorescence integrated co detection with different cell marker techniques were used to detect SGLT1 mRNA expression in Sprague-Dawley whole myocardium and Zucker diabetic rats. An Ex-vivo Langendorff ischemia-reperfusion perfusion model was used to study the effect of high glucose on myocardium at reperfusion. Canagliflozin a non-selective SGLT inhibitor (1μmoL/L to block the SGLT1 and SGLT2 transporter and 5nmol/L to block only the SGLT2 transposer) and Mizagliflozin a selective SGLT1 inhibitor (100nmol/L) was introduced following ischemia at two different glucose concentration concentrations at reperfusion and its effect on infarct size measured using triphenyltetrazolium chloride (TTC) staining. Results: Our data reveal that SGLT1 is homogenously expressed throughout the myocardium and is particularly evident within the vasculature. We have also demonstrated that high-glucose mediated injury in the isolated, perfused heart model and it is abrogated through the administration of both mixed SGLT2/SGLT1 inhibitor, canagliflozin, at a dose that inhibits both SGLT2 and SGLT1, and through the administration of novel specific SGLT1 inhibitor, Mizagliflozin. Conclusions: We have shown that SGLT1 is present in the myocardium. Hyperglycemia appears to augment myocardial infarction and inhibition of SGLT1 attenuates this increase.