Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1550)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • (-) Remove SARS-CoV-2 filter SARS-CoV-2 (136)
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (262) Apply RNAscope filter
  • TBD (151) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (53) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (31) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Brown Assay (24) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (13) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • Basescope (10) Apply Basescope filter
  • RNAscope Fluorescent Multiplex Assay (10) Apply RNAscope Fluorescent Multiplex Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Duplex (8) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (8) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 LS Assay (7) Apply RNAscope 2.5 LS Assay filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (143) Apply Neuroscience filter
  • Covid (121) Apply Covid filter
  • Cancer (109) Apply Cancer filter
  • Infectious (57) Apply Infectious filter
  • Development (54) Apply Development filter
  • Other: Methods (46) Apply Other: Methods filter
  • Inflammation (44) Apply Inflammation filter
  • HIV (15) Apply HIV filter
  • Immunotherapy (14) Apply Immunotherapy filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Reproduction (12) Apply Reproduction filter
  • Infectious Disease (11) Apply Infectious Disease filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Stem cell (8) Apply Stem cell filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Vaccines (6) Apply Vaccines filter
  • Endocrinology (5) Apply Endocrinology filter
  • Heart (5) Apply Heart filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Lung (4) Apply Lung filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Vaccine (4) Apply Vaccine filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Sex Differences (3) Apply Sex Differences filter
  • Skin (3) Apply Skin filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1550) Apply Publications filter
Histologic, viral, and molecular correlates of heart disease in fatal COVID-19

Annals of Diagnostic Pathology

2022 Oct 01

Mezache, L;Nuovo, G;Suster, D;Tili, E;Awad, H;Radwański, P;Veeraraghavan, R;
| DOI: 10.1016/j.anndiagpath.2022.151983

Cardiac manifestations are common in severe COVID-19. This study compared the histologic, viral, and molecular findings in cardiac tissue in fatal COVID-19 (n = 11) and controls (n = 11). In situ hybridization (SARS-CoV2 RNA) and immunohistochemistry for viral proteins and the host response were quantified for the samples and compared with qRTPCR and Western blot data. Control hearts showed a high resident population of macrophages that had variable ACE2 expression. Cardiac ACE2 expression was 10× greater in the heart tissues of cases and controls with obesity or type II diabetes. Multifocal endothelial cell swelling and degeneration, perivascular edema plus microvascular thrombi were unique to the cases. SARS-CoV2 RNA and nucleocapsid protein were rarely detected in situ in any COVID-19 heart. However, in each case abundant SARS-CoV-2 spike protein was evident. Co-expression experiments showed that the spike protein localized mostly to the ACE2+ interstitial macrophages/pericytes that were activated as evidenced by increased IL6 and TNFα expression. Western blots confirmed the presence of the viral spike protein, but not the nucleocapsid protein, in the cardiac homogenates. The intercalated disc proteins connexin 43, the primary cardiac gap junction protein, and NaV1.5, the predominant cardiac sodium channel, each showed marked lateral migration in the myocytes in the cases, which would increase the risk of reentrant arrhythmias. It is concluded that the viral spike protein, endocytosed by macrophages/pericytes, can induce a myocarditis with the possibility of conduction dysfunction due to abnormal localization of key intercalated disc proteins.
Co-administration of Favipiravir and the Remdesivir Metabolite GS-441524 Effectively Reduces SARS-CoV-2 Replication in the Lungs of the Syrian Hamster Model

mBio

2022 Feb 01

Chiba, S;Kiso, M;Nakajima, N;Iida, S;Maemura, T;Kuroda, M;Sato, Y;Ito, M;Okuda, M;Yamada, S;Iwatsuki-Horimoto, K;Watanabe, T;Imai, M;Armbrust, T;Baric, RS;Halfmann, PJ;Suzuki, T;Kawaoka, Y;
PMID: 35100870 | DOI: 10.1128/mbio.03044-21

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide since December 2019, causing coronavirus disease 2019 (COVID-19). Although vaccines for this virus have been developed rapidly, repurposing drugs approved to treat other diseases remains an invaluable treatment strategy. Here, we evaluated the inhibitory effects of drugs on SARS-CoV-2 replication in a hamster infection model and in in vitro assays. Favipiravir significantly suppressed virus replication in hamster lungs. Remdesivir inhibited virus replication in vitro, but was not effective in the hamster model. However, GS-441524, a metabolite of remdesivir, effectively suppressed virus replication in hamsters. Co-administration of favipiravir and GS-441524 more efficiently reduced virus load in hamster lungs than did single administration of either drug for both the prophylactic and therapeutic regimens; prophylactic co-administration also efficiently inhibited lung inflammation in the infected animals. Furthermore, pretreatment of hamsters with favipiravir and GS-441524 effectively protected them from virus transmission via respiratory droplets upon exposure to infected hamsters. Repurposing and co-administration of antiviral drugs may help combat COVID-19. IMPORTANCE During a pandemic, repurposing drugs that are approved for other diseases is a quick and realistic treatment option. In this study, we found that co-administration of favipiravir and the remdesivir metabolite GS-441524 more effectively blocked SARS-CoV-2 replication in the lungs of Syrian hamsters than either favipiravir or GS-441524 alone as part of a prophylactic or therapeutic regimen. Prophylactic co-administration also reduced the severity of lung inflammation. Moreover, co-administration of these drugs to naive hamsters efficiently protected them from airborne transmission of the virus from infected animals. Since both drugs are nucleotide analogs that interfere with the RNA-dependent RNA polymerases of many RNA viruses, these findings may also help encourage co-administration of antivirals to combat future pandemics.
Calcium exchange with troponin C in hypertrophic cardiomyopathy

Biophysical Journal

2022 Feb 01

Klass, M;Davis, J;Tardiff, J;
| DOI: 10.1016/j.bpj.2021.11.1466

Cardiac troponin T (cTnT) is a protein of the cardiac thin filament (CTF) and assists in conferring calcium regulation to muscle contraction. Mutations in cTnT often cause hypertrophic cardiomyopathy (HCM), a disease affecting 1/500 people worldwide. This study focuses on six HCM-causing, highly penetrant mutations located within the cTnT N-terminus (R94H/C, R92L/W/Q, and I79N) which are each associated with distinct phenotypes and severities in human patients. The goal of this study was to determine the effects of HCMcausing mutations in cTnT on the calcium-based regulation of muscle activation. Using fluorescently labeled, bacterially expressed, recombinant human protein, we measured in vitro calcium exchange (sensitivity via spectrofluorimetry and kinetics via stopped-flow) of human cTn and CTF complexes in the presence and absence of these disease-causing mutations. Disease-causing HCM mutations in cTn complexes alone resulted in no significant changes in either calcium sensitivity or calcium dissociation kinetics compared to wildtype (WT) controls. Alternatively, in the CTF every mutation significantly sensitized TnC to calcium. These results indicate that actin and tropomyosin are necessary to observe the effects of mutations on CTF activation. Although all mutations significantly increased calcium sensitivity of CTFs, four mutations (R92L/Q and R94H/C) significantly decreased the rate of calcium dissociation (1.2-1.5 fold), whereas two mutations significantly accelerated calcium dissociation (1.1-1.4 fold). Three mutations significantly accelerated calcium association (R92W, I79N, and R94C) 2.8-4.5 fold while a fourth trended with a slight, albeit functionally significant acceleration (R94H) at 2.0 fold. Thus, the calcium sensitization reported here for each mutation is accomplished via mutation-specific changes to the kinetics of calcium exchange with TnC. Furthermore, these results suggest that the kinetics of calcium exchange with TnC in the CTF system afford high resolution, mutation-specific mechanistic insight into altered myofilament calcium sensitivity that may ultimately facilitate targeted interventions.
Combination immunotherapy including OncoVEXmGMCSF creates a favorable tumor immune micro-environment in transgenic BRAF murine melanoma

Cancer immunology, immunotherapy : CII

2022 Jan 09

Gartrell, RD;Blake, Z;Rizk, EM;Perez-Lorenzo, R;Weisberg, SP;Simoes, I;Esancy, C;Fu, Y;Davari, DR;Barker, L;Finkel, G;Mondal, M;Minns, HE;Wang, SW;Fullerton, BT;Lozano, F;Chiuzan, C;Horst, B;Saenger, YM;
PMID: 34999916 | DOI: 10.1007/s00262-021-03088-y

Talimogene Laherparepvec (OncoVEXmGMCSF), an oncolytic virus, immune checkpoint inhibitor anti-programmed cell death protein 1 (anti-PD1), and BRAF inhibition (BRAFi), are all clinically approved for treatment of melanoma patients and are effective through diverse mechanisms of action. Individually, these therapies also have an effect on the tumor immune microenvironment (TIME). Evaluating the combination effect of these three therapies on the TIME can help determine when combination therapy is most appropriate for further study. In this study, we use a transgenic murine melanoma model (Tyr::CreER; BRAFCA/+; PTENflox/flox), to evaluate the TIME in response to combinations of BRAFi, anti-PD1, and OncoVEXmGMCSF. We find that mice treated with the triple combination BRAFi + anti-PD1 + OncoVEXmGMCSF have decreased tumor growth compared to BRAFi alone and prolonged survival compared to control. Flow cytometry shows an increase in percent CD8 + /CD3 + cytotoxic T Lymphocytes (CTLs) and a decrease in percent FOXP3 + /CD4 + T regulatory cells (Tregs) in tumors treated with OncoVEXmGMCSF compared to mice not treated with OncoVEXmGMCSF. Immunogenomic analysis at 30d post-treatment shows an increase in Th1 and interferon-related genes in mice receiving OncoVEXmGMCSF + BRAFi. In summary, treatment with combination BRAFi + anti-PD1 + OncoVEXmGMCSF is more effective than any single treatment in controlling tumor growth, and groups receiving OncoVEXmGMCSF had more tumoral infiltration of CTLs and less intratumoral Tregs in the TIME. This study provides rational basis to combine targeted agents, oncolytic viral therapy, and checkpoint inhibitors in the treatment of melanoma.
Persistence of Lgr5+ colonic epithelial stem cells in mouse models of inflammatory bowel disease

American journal of physiology. Gastrointestinal and liver physiology

2021 Jul 14

Girish, N;Liu, CY;Gadeock, S;Gomez, ML;Huang, Y;Sharifkhodaei, Z;Washington, MK;Polk, DB;
PMID: 34260310 | DOI: 10.1152/ajpgi.00248.2020

Intestinal mucosal healing is the primary therapeutic goal of medical treatments for inflammatory bowel disease (IBD). Epithelial stem cells are key players in the healing process. Lgr5+ stem cells maintain cellular turnover during homeostasis in the colonic crypt. However, they are lost and dispensable for repair in a wide variety of injury models, including dextran sulfate sodium (DSS) colitis, radiation, helminth infection, and T-cell activation. The direct loss of Lgr5+ cells activates a plasticity response in the epithelium in which other cell types can serve as stem cells. Whether this paradigm applies to mouse models of IBD remains unknown. In contrast to previously tested models, IBD models involve an inflammatory response rooted in the loss of immunologic tolerance to intestinal luminal contents including the microbiome. Here we show the persistence of Lgr5+ cells in oxazolone, TNBS, and Il10-/- and Il10-/- Tnfr1-/- IBD models. This contrasts with results obtained from DSS-induced injury. Through high-throughput expression profiling, we find that these colitis models were associated with distinct patterns of cytokine expression. Direct exposure of colonic epithelial organoids to DSS, oxazolone, or TNBS resulted in increased apoptosis and loss of Lgr5+ cells. Targeted ablation of Lgr5+ cells resulted in severe exacerbation of chronic, antibody-induced IL-10-deficient colitis, but had only modest effects in TNBS-induced colitis. These results show that distinct mouse models of IBD-like colitis induce different patterns of Lgr5+ stem cell retention and function.
Increased angiotensin II formation in the brain modulates cardiovascular homeostasis and erythropoiesis

Clinical science (London, England : 1979)

2021 Jun 11

Rodrigues, AF;Todiras, M;Qadri, F;Campagnole-Santos, MJ;Alenina, N;Bader, M;
PMID: 34013320 | DOI: 10.1042/CS20210072

In spite of the fact that the modulatory effects of angiotensin II (Ang II) on the sympathetic nerve activity to targeted organs involved in blood pressure (BP) regulation is well acknowledged, the local production of this peptide in the brain and the consequences of enhanced central Ang II beyond the cardiovascular system are not yet well comprehended. In the present study, we generated and validated a new transgenic mouse line overexpressing the rat full-length angiotensinogen (Agt) protein specifically in the brain (Agt-Tg). Adult Agt-Tg mice presented overall increased gene expression of total Agt in the brain including brainstem and hypothalamus. In addition, the excess of Agt led to abundantly detectable brain Ang II levels as well as increased circulating copeptin levels. Agt-Tg displayed raised BP in acute recordings, while long-term telemetrically measured basal BP was indistinguishable from wild-types. Agt-Tg has altered peripheral renin-angiotensin system and vasomotor sympathetic tone homeostasis because renal gene expression analysis, plasma Ang II measurements and ganglionic blockade experiments revealed suppressed renin expression and reduced Ang II and higher neurogenic pressure response, respectively. Plasma and urine screens revealed apparently normal fluid and electrolyte handling in Agt-Tg. Interestingly, hematological analyses showed increased hematocrit in Agt-Tg caused by enhanced erythropoiesis, which was reverted by submitting the transgenic mice to a long-term peripheral sympathectomy protocol. Collectively, our findings suggest that Agt-Tg is a valuable tool to study not only brain Ang II formation and its modulatory effects on cardiovascular homeostasis but also its role in erythropoiesis control via autonomic modulation.
Prefrontal cortex PACAP signaling: organization and role in stress regulation

Stress (Amsterdam, Netherlands)

2021 Mar 01

Martelle, SE;Cotella, EM;Nawreen, N;Chen, C;Packard, BA;Fitzgerald, M;Herman, JP;
PMID: 33726625 | DOI: 10.1080/10253890.2021.1887849

Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuromodulatory peptide strongly implicated in nervous stress processing. Human polymorphism of the primary PACAP receptor (PAC1) is linked to psychiatric disorders, including posttraumatic stress disorder (PTSD). Prefrontal cortex PACAP signaling is associated with processing of traumatic stress and fear learning, suggesting a potential role in PTSD-related deficits. We used RNAscope to define the cellular location of PACAP and PAC1 in the infralimbic cortex (IL). Subsequent experiments used a pharmacological approach to assess the impact of IL PACAP infusion on behavioral and physiological stress response and fear memory. Adult male Sprague-Dawley rats were bilaterally microinjected with PACAP (1 ug) or vehicle into the IL, 30 minutes prior to forced swim test (FST). Blood was sampled at 15, 30, 60, and 120 minutes for analysis of hypothalamic pituitary adrenal (HPA) axis reactivity. Five days after, animals were tested in a 3-day passive avoidance paradigm with subsequent testing of fear retention two weeks later. We observed that PACAP is highly expressed in putative pyramidal neurons (identified by VGlut1 expression), while PAC1 is enriched in interneurons (identified by GAD). Pretreatment with PACAP increased active coping style in the FST, despite higher levels of ACTH and corticosterone. The treatment was also sufficient to cause an increase in anxiety-like behavior in a dark/light crossover test and enhanced retention of passive avoidance. Our data suggest that IL PACAP plays a role in driving stress responses and in processing of fear memories, likely mediated by inhibition of cortical drive.
Localization of Angiotensin II Type 1 receptor gene expression in rodent and human kidneys

American journal of physiology. Renal physiology

2021 Feb 22

Schrankl, J;Fuchs, M;Broeker, K;Daniel, C;Kurtz, A;Wagner, C;
PMID: 33615887 | DOI: 10.1152/ajprenal.00550.2020

The kidneys are an important target for angiotensin II (ANG II). In the adult kidneys the effects of ANG II are mediated mainly by ANG II type 1 (AT1) receptors. AT1 receptor expression has been reported for a variety of different cell types within the kidneys, suggesting a broad spectrum of actions for ANG II. Since there have been heterogeneous results in the literature regarding the intrarenal distribution of AT1 receptors, this study aimed to obtain a comprehensive overview about the localization of AT1 receptor expression in mouse, rat and human kidneys. Using the cell specific and high-resolution RNAscope technique, we performed colocalization studies with various cell markers to specifically discriminate between different segments of the tubular and vascular system. Overall we found a similar pattern of AT1 mRNA expression in mouse, rat and human kidneys. AT1 receptors were detected in mesangial cells and renin-producing cells. In addition, AT1 mRNA was found in interstitial cells of the cortex and outer medulla. In rodents, late afferent and early efferent arterioles expressed AT1 receptor mRNA, but larger vessels of the investigated species showed no AT1 expression. Tubular expression of AT1 mRNA was species-dependent with a strong expression in proximal tubules of mice while expression was undetectable in human tubular cells. These findings suggest that the (juxta)glomerular area and the tubulointerstitium are conserved expression sites for AT1 receptors across species and might present the main target sites for ANG II in adult human and rodent kidneys.
A distinct repertoire of cancer-associated fibroblasts is enriched in cribriform prostate cancer

The journal of pathology. Clinical research

2021 Feb 18

Hesterberg, AB;Rios, BL;Wolf, EM;Tubbs, C;Wong, HY;Schaffer, KR;Lotan, TL;Giannico, GA;Gordetsky, JB;Hurley, PJ;
PMID: 33600062 | DOI: 10.1002/cjp2.205

Outcomes for men with localized prostate cancer vary widely, with some men effectively managed without treatment on active surveillance, while other men rapidly progress to metastatic disease despite curative-intent therapies. One of the strongest prognostic indicators of outcome is grade groups based on the Gleason grading system. Gleason grade 4 prostate cancer with cribriform morphology is associated with adverse outcomes and can be utilized clinically to improve risk stratification. The underpinnings of disease aggressiveness associated with cribriform architecture are not fully understood. Most studies have focused on genetic and molecular alterations in cribriform tumor cells; however, less is known about the tumor microenvironment in cribriform prostate cancer. Cancer-associated fibroblasts (CAFs) are a heterogeneous population of fibroblasts in the tumor microenvironment that impact cancer aggressiveness. The overall goal of this study was to determine if cribriform prostate cancers are associated with a unique repertoire of CAFs. Radical prostatectomy whole-tissue sections were analyzed for the expression of fibroblast markers (ASPN in combination with FAP, THY1, ENG, NT5E, TNC, and PDGFRβ) in stroma adjacent to benign glands and in Gleason grade 3, Gleason grade 4 cribriform, and Gleason grade 4 noncribriform prostate cancer by RNAscope . Halo Software was used to quantify percent positive stromal cells and expression per positive cell. The fibroblast subtypes enriched in prostate cancer were highly heterogeneous. Both overlapping and distinct populations of low abundant fibroblast subtypes in benign prostate stroma were enriched in Gleason grade 4 prostate cancer with cribriform morphology compared to Gleason grade 4 prostate cancer with noncribriform morphology and Gleason grade 3 prostate cancer. In addition, gene expression was distinctly altered in CAF subtypes adjacent to cribriform prostate cancer. Overall, these studies suggest that cribriform prostate cancer has a unique tumor microenvironment that may distinguish it from other Gleason grade 4 morphologies and lower Gleason grades.
Unlocking the Role of a Genital Herpesvirus, Otarine Herpesvirus 1, in California Sea Lion Cervical Cancer

Animals

2021 Feb 13

Deming, A;Wellehan, J;Colegrove, K;Hall, A;Luff, J;Lowenstine, L;Duignan, P;Cortés-Hinojosa, G;Gulland, F;
| DOI: 10.3390/ani11020491

Urogenital carcinoma in California sea lions (Zalophus californianus) is the most common cancer of marine mammals. Primary tumors occur in the cervix, vagina, penis, or prepuce and aggressively metastasize resulting in death. This cancer has been strongly associated with a sexually transmitted herpesvirus, otarine herpesvirus 1 (OtHV1), but the virus has been detected in genital tracts of sea lions without cancer and a causative link has not been established. To determine if OtHV1 has a role in causing urogenital carcinoma we sequenced the viral genome, quantified viral load from cervical tissue from sea lions with (n = 95) and without (n = 163) urogenital carcinoma, and measured viral mRNA expression using in situ mRNA hybridization (Basescope ) to quantify and identify the location of OtHV1 mRNA expression. Of the 95 sea lions diagnosed with urogenital carcinoma, 100% were qPCR positive for OtHV1, and 36% of the sea lions with a normal cervix were positive for the virus. The non-cancer OtHV1 positive cases had significantly lower viral loads in their cervix compared to the cervices from sea lions with urogenital carcinoma. The OtHV1 genome had several genes similar to the known oncogenes, and RNA in situ hybridization demonstrated high OtHV1 mRNA expression within the carcinoma lesions but not in normal cervical epithelium. The high viral loads, high mRNA expression of OtHV1 in the cervical tumors, and the presence of suspected OtHV1 oncogenes support the hypothesis that OtHV1 plays a significant role in the development of sea lion urogenital carcinoma.
Increased Abundance of Tumour-Associated Neutrophils in HPV-Negative Compared to HPV-Positive Oropharyngeal Squamous Cell Carcinoma Is Mediated by IL-1R Signalling

Frontiers in Oral Health

2021 Feb 11

Al-Sahaf, S;Hendawi, N;Ollington, B;Bolt, R;Ottewell, P;Hunter, K;Murdoch, C;
| DOI: 10.3389/froh.2021.604565

The incidence of human papillomavirus (HPV)-associated cancer is increasing and HPV is now implicated in the aetiology of more than 60% of all oropharyngeal squamous cell carcinomas (OPSCC). In OPSCC, innate immune cells such as neutrophils and macrophages generally correlate with poor prognosis, whilst adaptive immune cells, such as lymphocytes, tend to correlate with improved prognosis. This may, in part, be due to differences in the immune response within the tumour microenvironment leading to the recruitment of specific tumour-associated leukocyte sub-populations. In this study, we aimed to examine if differences exist in the levels of infiltrated leukocyte sub-populations, with particular emphasis on tumour-associated neutrophils (TAN), and to determine the mechanism of chemokine-induced leukocyte recruitment in HPV-positive compared to HPV-negative OPSCC. Immunohistochemical analysis showed that HPV-negative OPSCC contained significantly more neutrophils than HPV-positive tumours, whilst levels of CD68+ macrophages and CD3+ lymphocytes were similar. Using a 3D tissue culture model to represent tumour-stromal interactions, we demonstrated that HPV-negative tumour-stromal co-cultures expressed significantly higher levels of CXCL8, leading to increased neutrophil recruitment compared to their HPV-positive counterparts. HPV-negative OPSCC cells have previously been shown to express higher levels of IL-1 than their HPV-positive counterparts, indicating that this cytokine may be responsible for driving increased chemokine production in the HPV-negative 3D model. Inhibition of IL-1R in the tumour-stromal models using the receptor-specific antagonist, anakinra, dramatically reduced chemokine secretion and significantly impaired neutrophil and monocyte recruitment, suggesting that this tumour-stromal response is mediated by the IL-1/IL-1R axis. Here, we identify a mechanism by which HPV-negative OPSCC may recruit more TAN than HPV-positive OPSCC. Since TAN are associated with poor prognosis in OPSCC, our study identifies potential therapeutic targets aimed at redressing the chemokine imbalance to reduce innate immune cell infiltration with the aim of improving patient outcome.
A Modeling Framework for Investigating the Role of Human Atrial Fibroblast Calcium Signaling in Fibrogenesis

Biophysical Journal

2021 Feb 01

Fogli Iseppe, A;Morotti, S;Tekook, M;Hoffmann, D;Edwards, A;Dobrev, D;Grandi, E;
| DOI: 10.1016/j.bpj.2020.11.561

Atrial fibrosis is a prominent feature of atrial fibrillation (AF), the most prevalent chronic arrhythmia, and contributes importantly to the vulnerable substrate that promotes and maintains the arrhythmia. While the importance of atrial fibrosis in AF is well-established, and underscored by its potential use as a marker to guide AF ablation therapy, the mechanisms of its formation are largely unknown. Calcium-dependent processes have been involved in AF-promoting structural remodeling, making calcium-handling abnormalities a potentially critical element in AF pathophysiology. However, the exact molecular pathways controlling atrial fibroblast (Fb) proliferation/differentiation and those regulating transcription of extracellular matrix proteins remain largely unknown in any tissue, species, or disease state. To address this unmet need, we have developed a multi-scale modeling framework to 1) quantitively define the major players regulating intracellular calcium homeostasis in human atrial Fbs in both normal sinus rhythm and AF conditions, and to 2) link mechanistically the changes in human atrial Fb calcium signals to downstream outcomes (Fb activation and proliferation and collagen expression) under various profibrotic stimuli. Specifically, this involved building of a new mathematical model of cardiac fibroblast electrophysiology and calcium handling, based on a novel extensive experimental dataset in human atrial Fbs, and coupling it with an experimentally-constrained logic-based network model reflecting the role of calcium in acute (phosphoregulatory) and delayed (transcriptional) human atrial Fb signaling. We demonstrate the use of our computational framework in predicting the effects of angiotensin-II (AngII), a well-known promoter of cardiac fibrosis, on acute human atrial Fb calcium signals and longer-term downstream fibrotic outcomes. We further utilize the model to identify key mechanisms involved in both acute and chronic calcium signaling dysregulation, which could hold therapeutic promise.

Pages

  • « first
  • ‹ previous
  • …
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?