Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (102)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • (-) Remove FOS filter FOS (73)
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • (-) Remove PD-L1 filter PD-L1 (28)
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (29) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (23) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope 2.0 Assay (9) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent v2 (7) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • Basescope (1) Apply Basescope filter
  • RNAscope 2.5 HD Reagent Kit (1) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (65) Apply Neuroscience filter
  • Cancer (27) Apply Cancer filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • Development (5) Apply Development filter
  • Metabolism (4) Apply Metabolism filter
  • behavioral (3) Apply behavioral filter
  • Addiction (2) Apply Addiction filter
  • Behavior (2) Apply Behavior filter
  • Canine Cancer (2) Apply Canine Cancer filter
  • Endocrinology (2) Apply Endocrinology filter
  • Exercise (2) Apply Exercise filter
  • Immuno-Oncology (2) Apply Immuno-Oncology filter
  • Inflammation (2) Apply Inflammation filter
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Sleep (2) Apply Sleep filter
  • Albinism (1) Apply Albinism filter
  • Allergy Response (1) Apply Allergy Response filter
  • Anesthesia (1) Apply Anesthesia filter
  • Autism spectrum disorder (1) Apply Autism spectrum disorder filter
  • Feeding (1) Apply Feeding filter
  • Gender Bias (1) Apply Gender Bias filter
  • Glaucoma (1) Apply Glaucoma filter
  • Gut Mirobiome (1) Apply Gut Mirobiome filter
  • Hunger (1) Apply Hunger filter
  • Infant directed behvaior (1) Apply Infant directed behvaior filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Injury (1) Apply Injury filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • Neuroscince (1) Apply Neuroscince filter
  • Ophthalmology (1) Apply Ophthalmology filter
  • Opioid Consumption (1) Apply Opioid Consumption filter
  • Other: Behavior (1) Apply Other: Behavior filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Obesity (1) Apply Other: Obesity filter
  • Other: Skin (1) Apply Other: Skin filter
  • Photoperiod (1) Apply Photoperiod filter
  • Psychology (1) Apply Psychology filter
  • Sickness Behaviors (1) Apply Sickness Behaviors filter
  • Social Trauma (1) Apply Social Trauma filter
  • Stem cell (1) Apply Stem cell filter
  • Stress (1) Apply Stress filter
  • vasopressin (1) Apply vasopressin filter
  • Veterinary (1) Apply Veterinary filter
  • Weight Loss (1) Apply Weight Loss filter

Category

  • Publications (102) Apply Publications filter
Social trauma engages lateral septum circuitry to occlude social reward

Nature

2022 Nov 30

Li, L;Durand-de Cuttoli, R;Aubry, AV;Burnett, CJ;Cathomas, F;Parise, LF;Chan, KL;Morel, C;Yuan, C;Shimo, Y;Lin, HY;Wang, J;Russo, SJ;
PMID: 36450985 | DOI: 10.1038/s41586-022-05484-5

In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.
Concordance levels of PD-L1 expression by immunohistochemistry, mRNA in situ hybridization, and outcome in lung carcinomas

Hum Pathol.

2018 Jul 31

Coppock JD, Volaric AK, Mills AM, Gru AA.
PMID: 30075155 | DOI: 10.1016/j.humpath.2018.07.025

Targeted inhibition of programmed cell death-1 (PD-1) and its ligand (PD-L1) has emerged as first-line therapy for advanced non-small cell lung cancer. While patients with high PD-L1 expression have improved outcomes with anti-PD-1/PD-L1 directed therapies, use as a predictive biomarker is complicated by robust responses in some patients with low-level expression. Furthermore, reported PD-L1 levels in lung cancers vary widely and discrepancies exist with different antibodies. PD-L1 expression was thus compared by immunohistochemistry (IHC) versus RNA in situ hybridization (ISH) in 112 lung cancers by tissue microarray: 51 adenocarcinoma, 42 squamous cell carcinoma, 9 adenosquamous carcinoma, 5 carcinoid, 3 undifferentiated large-cell carcinoma, 1 large-cell neuroendocrine carcinoma, and 1 small cell carcinoma. At least 1% tumor cell staining was considered positive in each modality. A positive concordance of only 60% (67/112) was found between IHC and ISH. 50% (56/112) were positive by IHC and 50% (56/112) by ISH, however 20% (22/112) were ISH positive but IHC negative. Conversely, 21% (23/112) were IHC positive but ISH negative. There was no significant stratification of PD-L1 positivity by histologic subtype. A trend of more PD-L1 positive stage I cancers identified by ISH versus IHC was observed, however was not statistically significant [50% (27/54) by IHC and 64% (35/55) by ISH, P=.18]. No significant difference in survival was identified, with an average of 5.3months in IHC versus 5.2months in ISH positive cases. The results demonstrate discordance between PD-L1 RNA levels and protein expression in non-small cell lung cancers, warranting comparison as predictive biomarkers.

The significance of programmed cell death ligand 1 expression in resected lung adenocarcinoma.

Oncotarget

2017 Jan 27

Wu S, Shi X, Sun J, Liu Y, Luo Y, Liang Z, Wang J, Zeng X.
PMID: 28145884 | DOI: 10.18632/oncotarget.14851

Abstract

BACKGROUND:

Lung adenocarcinoma (AD) is a common variant of non-small cell lung cancer (NSCLC). Programmed cell death protein 1/programmed cell death ligand 1 (PD1/PD-L1) are promising immunotherapy targets and its expression may be an important biomarker of predicting clinical response. In this study, we evaluated PD-L1 expression in conjunction with clinicopathological characteristics and outcomes in resected lung adenocarcinoma.

RESULTS:

This study included 133 cases of lung adenocarcinoma. PD-L1 expression rate in lung adenocarcinoma was 16.5% at the mRNA level and 13.5% at the protein level, and the kappa coefficient of the two examination methods was 0.824 (P = 0.219, highly correlated). PD-L1 was highly expressed in male patients and smokers with lung adenocarcinoma (P = 0.019 and 0.002, respectively), while no associations were identified between PD-L1 expression and age, tumor size, clinical stage, positive pleural invasion, lymph node metastasis, or therapy methods. Overexpression of PD-L1 was a significant indicator of shorter recurrence free survival time and overall survival (P = 0.000 and 0.000, respectively). Multivariate analysis revealed that PD-L1 expression was an independent risk factor for poor recurrence free survival and overall survival (P = 0.009 and 0.016, respectively).

MATERIALS AND METHODS:

Expression of PD-L1 was examined with immunohistochemistry, using the VENTANA PD-L1 (SP263) rabbit monoclonal antibody. mRNA levels of PD-L1 were evaluated using in situ hybridization.

CONCLUSIONS:

PD-L1 overexpression is more frequently observed in male patients and smokers in lung adenocarcinoma. PD-L1 expression is an indicator of worse prognosis in surgically resected lung adenocarcinoma patients.

Characterization of expression and prognostic implications of transforming growth factor beta, programmed death-ligand 1, and T regulatory cells in canine histiocytic sarcoma

Veterinary immunology and immunopathology

2023 Mar 01

Murphy, JD;Shiomitsu, K;Milner, RJ;Lejeune, A;Ossiboff, RJ;Gell, JC;Axiak-Bechtel, S;
PMID: 36804838 | DOI: 10.1016/j.vetimm.2023.110560

Histiocytic sarcoma (HS) is an aggressive malignant neoplasm in dogs. Expression and prognostic significance of transforming growth factor beta (TGF-β), programmed death-ligand 1 (PD-L1), and T regulatory cells (Tregs) in HS is unknown. The goal of this study was to investigate the expression and prognostic significance of TGF-β, PD-L1, and FoxP3/CD25 in canine HS utilizing RNA in situ hybridization (RNAscope ). After validation was performed, RNAscope on formalin-fixed paraffin-embedded (FFPE) patient HS tissue samples was performed for all targets and expression quantified with HALO software image analysis. Cox proportional hazard model was conducted to investigate the association between survival time and each variable. Additionally, for categorical data, the Kaplan-Meier product-limit method was used to generate survival curves. TGF-β and PD-L1 mRNA expression was confirmed in the DH82 cell line by reverse transcription polymerase chain reaction (RT-PCR) and CD25 + FoxP3 + cells were detected by flow cytometry in peripheral blood. Once the RNAscope method was validated, TGF-β H-score and dots/cell and FoxP3 dots/cell were assessed in HS samples and found to be significantly correlated with survival. Moderate positive correlations were found between FoxP3 and PD-L1 H-score, percent staining area, and dots/cell, and FoxP3 and TGF-β dots/cell. In summary, RNAscope is a valid technique to detect TGF-β and PD-L1 expression and identify Tregs in canine HS FFPE tissues. Furthermore, canine HS expresses TGF-β and PD-L1. Increased TGF-β and FoxP3 correlated with worse prognosis. Prospective studies are warranted to further investigate TGF-β, PD-L1, and Tregs effect on prognosis.
PACAP controls endocrine and behavioral stress responses via separate brain circuits

Biological Psychiatry Global Open Science

2023 Apr 01

Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001

Background The neuropeptide PACAP is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57Bl6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex (mPFC) to hypothalamus, impairs c-fos activation and CRH mRNA elevation in PVN after 2 hr of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in non-hypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala (EA), on the other hand, attenuates ARS-induced hypophagia, along with EA fos induction, without affecting ARS-induced CRH mRNA elevation in PVN. PACAP projections to EA terminate at PKCδ neurons in both central amygdala (CeA) and oval nuclei of bed nucleus of stria terminalis (BNSTov). Silencing of PKCδ neurons in CeA, but not in BNSTov, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n>5 per group. Conclusions A frontocortical descending PACAP projection controls PVN CRH mRNA production, to maintain hypothalamo-pituitary adrenal (HPA) axis activation, and regulate the endocrine response to stress. An ascending PACAPergic projection from eLPBn to PKCδ neurons in central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
Transcriptional Activation, Deactivation and Rebound Patterns in Cortex, Hippocampus and Amygdala in Response to Ketamine Infusion in Rats

Frontiers in molecular neuroscience

2022 May 30

Kim, JJ;Sapio, MR;Vazquez, FA;Maric, D;Loydpierson, AJ;Ma, W;Zarate, CA;Iadarola, MJ;Mannes, AJ;
PMID: 35706427 | DOI: 10.3389/fnmol.2022.892345

Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, is a recently revitalized treatment for pain and depression, yet its actions at the molecular level remain incompletely defined. In this molecular-pharmacological investigation in the rat, we used short- and longer-term infusions of high dose ketamine to stimulate neuronal transcription processes. We hypothesized that a progressively stronger modulation of neuronal gene networks would occur over time in cortical and limbic pathways. A continuous intravenous administration paradigm for ketamine was developed in rat consisting of short (1 h) and long duration (10 h, and 10 h + 24 h recovery) infusions of anesthetic concentrations to activate or inhibit gene transcription in a pharmacokinetically controlled fashion. Transcription was measured by RNA-Seq in three brain regions: frontal cortex, hippocampus, and amygdala. Cellular level gene localization was performed with multiplex fluorescent in situ hybridization. Induction of a shared transcriptional regulatory network occurred within 1 h in all three brain regions consisting of (a) genes involved in stimulus-transcription factor coupling that are induced during altered synaptic activity (immediate early genes, IEGs, such as c-Fos, 9-12 significant genes per brain region, p < 0.01 per gene) and (b) the Nrf2 oxidative stress-antioxidant response pathway downstream from glutamate signaling (Nuclear Factor Erythroid-Derived 2-Like 2) containing 12-25 increasing genes (p < 0.01) per brain region. By 10 h of infusion, the acute results were further reinforced and consisted of more and stronger gene alterations reflecting a sustained and accentuated ketamine modulation of regional excitation and plasticity. At the cellular level, in situ hybridization localized up-regulation of the plasticity-associated gene Bdnf, and the transcription factors Nr4a1 and Fos, in cortical layers III and V. After 24 h recovery, we observed overshoot of transcriptional processes rather than a smooth return to homeostasis suggesting an oscillation of plasticity occurs during the transition to a new phase of neuronal regulation. These data elucidate critical molecular regulatory actions during and downstream of ketamine administration that may contribute to the unique drug actions of this anesthetic agent. These molecular investigations point to pathways linked to therapeutically useful attributes of ketamine.
Role of dorsomedial striatum neuronal ensembles in incubation of methamphetamine craving after voluntary abstinence.

J Neurosci.

2016 Dec 15

Caprioli D, Venniro M, Zhang M, Bossert JM, Warren BL, Hope BT, Shaham Y.
PMID: 27980115 | DOI: 10.1523/JNEUROSCI.3091-16.2016

We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral and dorsomedial striatum (DLS, DMS) in this incubation.We trained rats to self-administer palatable food pellets (6 days, 6-h/d) and methamphetamine (12 days, 6-h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/day) for 19 days. We used in situ hybridization to measure co-labeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization co-labeling results, we tested the causal role of DMS D1- and D2-family receptors, and DMS neuronal ensembles in 'incubated' methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively.Methamphetamine seeking was higher after 21 days of voluntary abstinence than after 1 day (incubation of methamphetamine craving). The 'incubated' response was associated with increased Fos expression in DMS but not DLS; Fos was co-labeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21.Results demonstrate a role of DMS dopamine D1 and D2-receptors in incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation.

SIGNIFICANCE STATEMENT:

In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we used classical pharmacology, in situ hybridization, immunohistochemistry, and the Daun02 inactivation procedure to demonstrate a critical role of dorsomedial striatum neuronal ensembles in this new form of incubation of drug craving.

Concordance study of PD-L1 expression in primary and metastatic bladder carcinomas: comparison of four commonly used antibodies and RNA expression

Mod Pathol.

2017 Dec 22

Tretiakova M, Fulton R, Kocherginsky M, Long T, Ussakli C, Antic T, Gown A.
PMID: 29271413 | DOI: 10.1038/modpathol.2017.188

Therapy with anti-PD-L1 immune check-point inhibitors is approved for several cancers, including advanced urothelial carcinomas. PD-L1 prevalence estimates vary widely in bladder cancer, and lack of correlation between expression and clinical outcomes and immunotherapyresponse may be attributed to methodological differences of the immunohistochemical reagents and procedures. We characterized PD-L1 expression in 235 urothelial carcinomas including 79 matched pairs of primary and metastatic cancers using a panel of four PD-L1 immunoassays in comparison with RNAscope assay using PD-L1-specific probe (CD274). The antibody panel included three FDA-approved clones (22C3 for pembrolizumab, 28.8 for nivolumab, SP142 for atezolizumab), and a commonly used clone E1L3N. Manual scoring of tissue microarrays was performed in each of 235 tumors (624 tissue cores) and compared to an automated image analysis. Expression of PD-L1 in tumor cells by ≥1 marker was detected in 41/142 (28.9%) primary tumors, 13/77 (16.9%) lymph nodes, and 2/16 (12.5%) distant metastases. In positive cases, high PD-L1 expression (>50% cells) was detected in 34.1% primary and 46.7% metastases. Concordant PD-L1 expression status was present in 71/79 (89.9%) cases of matched primary and metastatic urothelial carcinomas. PD-L1 sensitivity ranked from highest to lowest as follows: RNAscope, clone 28.8, 22C3, E1L3N, and SP142. Pairwise concordance correlation coefficients between the four antibodies in 624 tissue cores ranged from 0.76 to 0.9 for tumor cells and from 0.30 to 0.85 for immune cells. RNA and protein expression levels showed moderate to high agreement (0.72-0.87). Intra-tumor expression heterogeneity was low for both protein and RNA assays (interclass correlation coefficients: 0.86-0.94). Manual scores were highly concordant with automated Aperio scores (0.94-0.97). A significant subset of 56/235 (23.8%) urothelial carcinomas stained positive for PD-L1 with high concordance between all four antibodies and RNA ISH assay. Despite some heterogeneity in staining, the overall results are highly concordant suggesting diagnostic equivalence of tested assays.

Automated Tumour Recognition and Digital Pathology Scoring Unravels New Role for PD-L1 in Predicting Good Outcome in ER-/HER2+ Breast Cancer.

Journal of Oncology (2018)

2018 Dec 17

Humphries MP, Hynes S, Bingham V, Cougot D, James J, Patel-Socha F, Parkes EE, Blayney JK, Rorke MA, Irwin GW, McArt DG, Kennedy RD, Mullan PB, McQuaid S, Salto-Tellez M, Buckley NE.
| DOI: 10.1155/2018/2937012

The role of PD-L1 as a prognostic and predictive biomarker is an area of great interest. However, there is a lack of consensus on how to deliver PD-L1 as a clinical biomarker. At the heart of this conundrum is the subjective scoring of PD-L1 IHC in most studies to date. Current standard scoring systems involve separation of epithelial and inflammatory cells and find clinical significance in different percentages of expression, e.g., above or below 1%. Clearly, an objective, reproducible and accurate approach to PD-L1 scoring would bring a degree of necessary consistency to this landscape. Using a systematic comparison of technologies and the application of QuPath, a digital pathology platform, we show that high PD-L1 expression is associated with improved clinical outcome in Triple Negative breast cancer in the context of standard of care (SoC) chemotherapy, consistent with previous findings. In addition, we demonstrate for the first time that high PD-L1 expression is also associated with better outcome in ER- disease as a whole including HER2+ breast cancer. We demonstrate the influence of antibody choice on quantification and clinical impact with the Ventana antibody (SP142) providing the most robust assay in our hands. Through sampling different regions of the tumour, we show that tumour rich regions display the greatest range of PD-L1 expression and this has the most clinical significance compared to stroma and lymphoid rich areas. Furthermore, we observe that both inflammatory and epithelial PD-L1 expression are associated with improved survival in the context of chemotherapy. Moreover, as seen with PD-L1 inhibitor studies, a low threshold of PD-L1 expression stratifies patient outcome. This emphasises the importance of using digital pathology and precise biomarker quantitation to achieve accurate and reproducible scores that can discriminate low PD-L1 expression.
Choice for drug or natural reward engages largely overlapping neuronal ensembles in the infralimbic prefrontal cortex

Journal of Neuroscience

2018 Feb 26

Pfarr S, Schaaf L, Reinert JK, Paul E, Herrmannsdörfer F, Roßmanith M, Kuner T, Hansson AC, Spanagel R, Körber C, Sommer WH.
PMID: - | DOI: Fos Bcl11b Rgs8

Cue-reward associations form distinct memories that can drive appetitive behaviors and are involved in craving for both drugs and natural rewards. Distinct sets of neurons, so called neuronal ensembles, in the infralimbic area (IL) of the medial prefrontal cortex play a key role in alcohol seeking. Whether this ensemble is specific for alcohol or controls reward seeking in general remains unclear. Here, we compared IL ensembles formed upon recall of drug (alcohol) or natural reward (saccharin) memories in male Wistar rats. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal, we found that cue-induced seeking of either alcohol or saccharin activated ensembles of similar size and organization, whereby these ensembles consist of largely overlapping neuronal populations. Thus, the IL seems to act as a general integration hub for reward seeking behavior, but also contains subsets of neurons that encode for the different rewards.

SIGNIFICANCE STATEMENT

Cue-reward associations form distinct memories that can act as drivers of appetitive behaviors and are involved in craving for natural rewards as well as for drugs. Distinct sets of neurons, so called neuronal ensembles, in the infralimbic area of the medial prefrontal cortex play a key role in cue-triggered reward seeking. However, it is unclear whether these ensembles act as broadly tuned controllers of approach behavior or represent the learned associations between specific cues and rewards. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal we find largely overlapping neuronal populations. Repeated activation by two distinct events could reflect the linking of the two memory traces within the same neuron.

Osmoadaptive GLP-1R signalling in hypothalamic neurones inhibits antidiuretic hormone synthesis and release

Molecular metabolism

2023 Feb 10

Greenwood, MP;Greenwood, M;Bárez-López, S;Hawkins, JW;Short, K;Tatovic, D;Murphy, D;
PMID: 36773648 | DOI: 10.1016/j.molmet.2023.101692

The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release.We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland.We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis.In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.
TAAR1 regulates drug-induced reinstatement of cocaine-seeking via negatively modulating CaMKIIα activity in the NAc

Molecular psychiatry

2022 Jan 25

Liu, J;Wu, R;Seaman, R;Manz, KM;Johnson, B;Vu, J;Huang, Y;Zhang, Y;Robison, AJ;Neve, R;Grueter, BA;Dietz, D;Li, JX;
PMID: 35079125 | DOI: 10.1038/s41380-022-01448-3

Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?