Underwood, CF;Burke, PGR;Kumar, NN;Goodchild, AK;McMullan, S;Phillips, JK;Hildreth, CM;
PMID: 35654013 | DOI: 10.1159/000525337
Angiotensin (Ang) II signalling in the hypothalamic paraventricular nucleus (PVN) via angiotensin type-1a receptors (AT1R) regulates vasopressin release and sympathetic nerve activity - two effectors of blood pressure regulation. We determined the cellular expression and function of AT1R in the PVN of a rodent model of polycystic kidney disease (PKD), the Lewis Polycystic Kidney (LPK) rat, to evaluate its contribution to blood pressure regulation and augmented vasopressin release in PKD.PVN AT1R gene expression was quantified with fluorescent in-situ hybridisation in LPK and control rats. PVN AT1R function was assessed with pharmacology under urethane anaesthesia in LPK and control rats instrumented to record arterial pressure and sympathetic nerve activity.AT1R gene expression was upregulated in the PVN, particularly in CRH neurons, of LPK versus control rats. PVN microinjection of Ang II produced larger increases in systolic blood pressure in LPK versus control rats (36±5 vs. 17±2 mmHg; P<0.01). Unexpectedly, Ang II produced regionally heterogeneous sympathoinhibition (renal: -33%; splanchnic: -12%; lumbar no change) in LPK and no change in controls. PVN pre-treatment with losartan, a competitive AT1R antagonist, blocked the Ang II-mediated renal sympathoinhibition and attenuated the pressor response observed in LPK rats. The Ang II pressor effect was also blocked by systemic OPC-21268, a competitive V1A receptor antagonist, but unaffected by hexamethonium, a sympathetic ganglionic blocker.Collectively, our data suggest that upregulated AT1R expression in PVN sensitises neuroendocrine release of vasopressin in the LPK, identifying a central mechanism for the elevated vasopressin levels present in PKD.The Author(s).
Mara, AB;Gavitt, TD;Tulman, ER;Miller, JM;He, W;Reinhardt, EM;Ozyck, RG;Goodridge, ML;Silbart, LK;Szczepanek, SM;Geary, SJ;
PMID: 35906257 | DOI: 10.1038/s41541-022-00513-w
Bacterial lipoproteins are an often-underappreciated class of microbe-associated molecular patterns with potent immunomodulatory activity. We previously reported that vaccination of BALB/c mice with Mycoplasma pneumoniae (Mp) lipid-associated membrane proteins (LAMPs) resulted in lipoprotein-dependent vaccine enhanced disease after challenge with virulent Mp, though the immune responses underpinning this phenomenon remain poorly understood. Herein, we report that lipoprotein-induced VED in a mouse model is associated with elevated inflammatory cytokines TNF-α, IL-1β, IL-6, IL-17A, and KC in lung lavage fluid and with suppurative pneumonia marked by exuberant neutrophilia in the pulmonary parenchyma. Whole-lung-digest flow cytometry and RNAScope analysis identified multiple cellular sources for IL-17A, and the numbers of IL-17A producing cells were increased in LAMPs-vaccinated/Mp-challenged animals compared to controls. Specific IL-17A or neutrophil depletion reduced disease severity in our VED model-indicating that Mp lipoproteins induce VED in an IL-17A-dependent manner and through exuberant neutrophil recruitment. IL-17A neutralization reduced levels of TNF-α, IL-1β, IL-6, and KC, indicating that IL-17A preceded other inflammatory cytokines. Surprisingly, we found that IL-17A neutralization impaired bacterial clearance, while neutrophil depletion improved it-indicating that, while IL-17A appears to confer both maladaptive and protective responses, neutrophils play an entirely maladaptive role in VED. Given that lipoproteins are found in virtually all bacteria, the potential for lipoprotein-mediated maladaptive inflammatory responses should be taken into consideration when developing vaccines against bacterial pathogens.
Damsky, W;Wang, A;Kim, DJ;Young, BD;Singh, K;Murphy, MJ;Daccache, J;Clark, A;Ayasun, R;Ryu, C;McGeary, MK;Odell, ID;Fazzone-Chettiar, R;Pucar, D;Homer, R;Gulati, M;Miller, EJ;Bosenberg, M;Flavell, RA;King, B;
PMID: 35668129 | DOI: 10.1038/s41467-022-30615-x
Sarcoidosis is an idiopathic inflammatory disorder that is commonly treated with glucocorticoids. An imprecise understanding of the immunologic changes underlying sarcoidosis has limited therapeutic progress. Here in this open-label trial (NCT03910543), 10 patients with cutaneous sarcoidosis are treated with tofacitinib, a Janus kinase inhibitor. The primary outcome is the change in the cutaneous sarcoidosis activity and morphology instrument (CSAMI) activity score after 6 months of treatment. Secondary outcomes included change in internal organ involvement, molecular parameters, and safety. All patients experience improvement in their skin with 6 patients showing a complete response. Improvement in internal organ involvement is also observed. CD4+ T cell-derived IFN-γ is identified as a central cytokine mediator of macrophage activation in sarcoidosis. Additional type 1 cytokines produced by distinct cell types, including IL-6, IL-12, IL-15 and GM-CSF, also associate with pathogenesis. Suppression of the activity of these cytokines, especially IFN-γ, correlates with clinical improvement. Our results thus show that tofacitinib treatment is associated with improved sarcoidosis symptoms, and predominantly acts by inhibiting type 1 immunity.
Clinical science (London, England : 1979)
Noto, NM;Restrepo, YM;Speth, RC;
PMID: 34878506 | DOI: 10.1042/CS20211043
It is well-established that Ang-(1-7) counteracts the effects of Ang II in the periphery, while stimulating vasopressin release and mimicking the activity of Ang II in the brain, through interactions with various receptors. The rapid metabolic inactivation of Ang-(1-7) has proven to be a limitation to therapeutic administration of the peptide. To circumvent this problem, Alves et al. (Clinical Science (2021) 135(18), https://doi.org/10.1042/CS20210599) developed a new transgenic rat model that overexpresses an Ang-(1-7)-producing fusion protein. In this commentary, we discuss potential concerns with this model while also highlighting advances that can ensue from this significant technical feat.
Cho, I;Chang, JB;
PMID: 35233025 | DOI: 10.1038/s41598-022-06903-3
Simultaneous nanoscale imaging of mRNAs and proteins of the same specimen can provide better information on the translational regulation, molecular trafficking, and molecular interaction of both normal and diseased biological systems. Expansion microscopy (ExM) is an attractive option to achieve such imaging; however, simultaneous ExM imaging of proteins and mRNAs has not been demonstrated. Here, a technique for simultaneous ExM imaging of proteins and mRNAs in cultured cells and tissue slices, which we termed dual-expansion microscopy (dual-ExM), is demonstrated. First, we verified a protocol for the simultaneous labeling of proteins and mRNAs. Second, we combined the simultaneous labeling protocol with ExM to enable the simultaneous ExM imaging of proteins and mRNAs in cultured cells and mouse brain slices and quantitatively study the degree of signal retention after expansion. After expansion, both proteins and mRNAs can be visualized with a resolution beyond the diffraction limit of light in three dimensions. Dual-ExM is a versatile tool to study complex biological systems, such as the brain or tumor microenvironments, at a nanoscale resolution.
Open Forum Infectious Diseases
Briggs, N;Wei, B;Ahuja, C;Baker, C;Foppiano Palacios, C;Lee, E;O’Grady, N;Singanamala, S;Singh, K;Bandaranayake, T;Cohen, J;Damsky, W;Davis, M;Mejia, R;Nelson, C;Topal, J;Azar, M;
| DOI: 10.1093/ofid/ofac360
Cutaneous leishmaniasis is a parasitic infection that causes significant maternal morbidity, and even fetal mortality, during pregnancy, yet there are limited therapeutic options. Here, we report a case of leishmaniasis in a pregnant immigrant with exuberant mucocutaneous lesions with favorable response to liposomal amphotericin B.