Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (4)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (11) Apply Lgr5 filter
  • V-nCoV2019-S (8) Apply V-nCoV2019-S filter
  • SARS-CoV-2 (6) Apply SARS-CoV-2 filter
  • Axin2 (5) Apply Axin2 filter
  • HPV-HR18 (5) Apply HPV-HR18 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (4)
  • PD-L1 (4) Apply PD-L1 filter
  • c-MYC (4) Apply c-MYC filter
  • SOX2 (3) Apply SOX2 filter
  • CD68 (3) Apply CD68 filter
  • CD3E (3) Apply CD3E filter
  • NANOG (3) Apply NANOG filter
  • Klf4 (3) Apply Klf4 filter
  • OLFM4 (3) Apply OLFM4 filter
  • OCT4 (3) Apply OCT4 filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Cd8a (2) Apply Cd8a filter
  • CSF1R (2) Apply CSF1R filter
  • CXCL10 (2) Apply CXCL10 filter
  • CXCL13 (2) Apply CXCL13 filter
  • Ifng (2) Apply Ifng filter
  • Gfral (2) Apply Gfral filter
  • GDF15 (2) Apply GDF15 filter
  • GLP1R (2) Apply GLP1R filter
  • GREM1 (2) Apply GREM1 filter
  • IDO1 (2) Apply IDO1 filter
  • Vegfa (2) Apply Vegfa filter
  • MDM2 (2) Apply MDM2 filter
  • Tgfbr1 (2) Apply Tgfbr1 filter
  • PDCD1 (2) Apply PDCD1 filter
  • PPIB (2) Apply PPIB filter
  • SMOC2 (2) Apply SMOC2 filter
  • BCL6 (2) Apply BCL6 filter
  • sox10 (2) Apply sox10 filter
  • Smad7 (2) Apply Smad7 filter
  • HPV16/18 (2) Apply HPV16/18 filter
  • Siglech (2) Apply Siglech filter
  • GPC3 (2) Apply GPC3 filter
  • Ly6a (2) Apply Ly6a filter
  • VGAT (2) Apply VGAT filter
  • Il-6 (2) Apply Il-6 filter
  • HEV (2) Apply HEV filter
  • HPV HR18 (2) Apply HPV HR18 filter
  • IFN-β (2) Apply IFN-β filter
  • HSATII (2) Apply HSATII filter
  • MALAT1 (1) Apply MALAT1 filter
  • ALB (1) Apply ALB filter
  • Csf3 (1) Apply Csf3 filter
  • Sox9 (1) Apply Sox9 filter

Product

  • (-) Remove RNAscope 2.5 LS Assay filter RNAscope 2.5 LS Assay (4)

Research area

  • Cancer (4) Apply Cancer filter
  • HPV (2) Apply HPV filter
  • Infectious Disease (2) Apply Infectious Disease filter
  • Immunotherapy (1) Apply Immunotherapy filter

Category

  • Publications (4) Apply Publications filter
Immunotherapy in Penile Squamous Cell Carcinoma: Present or Future? Multi-Target Analysis of Programmed Cell Death Ligand 1 Expression and Microsatellite Instability

Frontiers in medicine

2022 May 03

Montella, M;Sabetta, R;Ronchi, A;De Sio, M;Arcaniolo, D;De Vita, F;Tirino, G;Caputo, A;D'Antonio, A;Fiorentino, F;Facchini, G;Lauro, GD;Perdonà, S;Ventriglia, J;Aquino, G;Feroce, F;Borges Dos Reis, R;Neder, L;Brunelli, M;Franco, R;Zito Marino, F;
PMID: 35592855 | DOI: 10.3389/fmed.2022.874213

Penile cancer (PC) is an extremely rare malignancy, and the patients at advanced stages have currently limited treatment options with disappointing results. Immune checkpoint inhibitors anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) are currently changing the treatment of several tumors. Furthermore, the microsatellite instability (MSI) and the deficient mismatch repair system (dMMR) proteins represent predictive biomarkers for response to immune checkpoint therapy. Until present, few data have been reported related to PD-L1 expression and MSI in PC. The main aim of our study was the evaluation of PD-L1 expression in tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs) in immune cells and the analysis of dMMR/MSI status in a large series of PCs.A series of 72 PC, including 65 usual squamous cell carcinoma (USCC), 1 verrucous, 4 basaloid, 1 warty, and 1 mixed (warty-basaloid), was collected. Immunohistochemistry (IHC) was performed to assess PD-L1 expression using two different anti-PD-L1 antibodies (clone SP263 and SP142 Ventana) and MMR proteins expression using anti-MLH1, anti-PMS2, anti-MSH2, and anti-MSH6 antibodies. PCR analysis was performed for the detection of MSI status.Of the 72 PC cases analyzed by IHC, 45 (62.5%) cases were TC positive and 57 (79%) cases were combined positive score (CPS) using PDL1 SP263. In our cohort, TILs were present in 62 out of 72 cases (86.1%), 47 (75.8%) out of 62 cases showed positivity to PDL1 clone SP142. In our series, 59 cases (82%) had pMMR, 12 cases (16.7%) had lo-paMMR, and only 1 case (1.3%) had MMR. PCR results showed that only one case lo-paMMR was MSI-H, and the case dMMR by IHC not confirmed MSI status.Our findings showed that PD-L1 expression and MSI status represent frequent biological events in this tumor suggesting a rationale for a new frontier in the treatment of patients with PC based on the immune checkpoint inhibitors.
p16 Immunohistochemistry in Oropharyngeal Squamous Cell Carcinoma Using the E6H4 Antibody Clone: A Technical Method Study for Optimal Dilution.

Head Neck Pathol.

2017 Nov 30

Lewis JS Jr, Shelton J, Kuhs KL, K Smith D.
PMID: 29190003 | DOI: 10.1007/s12105-017-0871-5

Routine testing for p16 immunohistochemistry (with selective HPV-specific test use) has been recommended for clinical practice in oropharyngeal squamous cell carcinoma (OPSCC). Data suggests that the E6H4 clone performs best for this purpose, yet no studies have evaluated the optimal antibody concentration for OPSCC testing. We evaluated three concentrations (undiluted, 1:5, and 1:10) of the primary antibody solution for E6H4 using tissue microarrays from a cohort of 199 OPSCC patients with a > 70% staining cutoff for positivity. Concordance was evaluated using percent agreement and Cohen's kappa. The concentrations were evaluated for sensitivity and specificity using high risk HPV RNA in situ hybridization (RNA-ISH) and also correlated with Kaplan-Meier overall survival analysis. Inter-rater agreement was very high between p16 results at each concentration and also with RNA in situ hybridization (p < 0.0001 for all). Agreement between p16 undiluted and 1:5 dilution (agreement 98.2%; Kappa 0.943; p < 0.0001) was very high and between p16 undiluted and 1:10 dilution (agreement 79.2%; Kappa 0.512; p < 0.0001) much lower. Intensity of the staining did decrease with the 1:5 and 1:10 dilutions compared to undiluted, but not in a manner that obviously would change test interpretation or performance. Results suggest that the E6H4 antibody performs well at dilutions of up to 1:5 fold with a minor decrease in staining intensity, minimum loss of sensitivity, and no loss of specificity in OPSCC patients. This could result in reagent and cost savings.

HR-HPV E6/E7 mRNA In Situ Hybridization: Validation Against PCR, DNA In Situ Hybridization, and p16 Immunohistochemistry in 102 Samples of Cervical, Vulvar, Anal, and Head and Neck Neoplasia.

Am J Surg Pathol.

2017 May 01

Mills AM, Dirks DC, Poulter MD, Mills SE, Stoler MH.
PMID: 28403015 | DOI: 10.1097/PAS.0000000000000800

Dysregulated expression of oncogenic types of E6 and E7 is necessary for human papillomavirus (HPV)-driven carcinogenesis. An HPV E6/E7 mRNA in situ hybridization (ISH) assay covering 18 common high-risk types ("HR-RISH," aka HR-HPV RNA18 ISH) has not been extensively studied in the anogenital tract or validated on automated technology. We herein compare HR-RISH to DNA polymerase chain reaction (PCR), p16 immunohistochemistry, and a previously available HPV DNA ISH assay in HPV-related anogenital and head and neck (H&N) neoplasia. A total of 102 squamous intraepithelial lesions (16 CIN1, 25 CIN3, 3 AIN1, 12 AIN3, 9 VIN3)/invasive squamous cell carcinomas (17 cervical, 2 anal, 18 H&N) as well as 10 normal and 15 reactive cervix samples were collected. HR-RISH, DNA ISH, and p16 immunohistochemistry were performed on whole formalin-fixed, paraffin-embedded sections. RNA ISH for 6 low-risk HPV types (LR-RISH) was also performed. RNA and DNA ISH assays used automated systems. HR-HPV PCR was performed on morphology-directed formalin-fixed, paraffin-embedded punches. HR-RISH was ≥97% sensitive for PCR+ and p16+ neoplasia, as well as morphologically defined anogenital high grade squamous intraepithelial lesion/invasive squamous cell carcinoma. HR-RISH was also positive in 78% of anogenital low grade squamous intraepithelial lesion, including 81% of CIN1. Furthermore, a subset of PCR-negative/invalid and p16-negative lesions was positive for HR-RISH. Only 1 problematic reactive cervix sample and no normal cervix samples stained. These results demonstrate that HR-RISH is a robust method for the detection of HR-HPV-related neoplasia and provides insight into HPV pathobiology. Performance meets or exceeds that of existing assays in anogenital and H&N lesions and may play a role in resolving diagnostically challenging CIN1 versus reactive cases.

HPV E6/E7 mRNA In Situ Hybridization in the Diagnosis of Cervical Low-grade Squamous Intraepithelial Lesions (LSIL)

Am J Surg Pathol.

2017 Nov 03

Mills AM, Coppock JD, Willis BC, Stoler MH.
PMID: 29112014 | DOI: 10.1097/PAS.0000000000000974

Cervical low-grade squamous intraepithelial lesions (LSIL) (aka cervical intraepithelial neoplasia, grade 1 [CIN1]) can present considerable diagnostic challenges and are associated with poor interobserver reproducibility and overdiagnosis. Furthermore, ancillary studies such as p16 immunohistochemistry have shown little utility in resolving the LSIL versus negative/reactive differential. Human papillomavirus (HPV) RNA in situ hybridization (ISH) has shown promise as a diagnostic aid in this setting, but has not been studied in a large case series. We herein investigate high-risk and low-risk HPV RNA ISH in 126 cervical biopsies originally diagnosed as LSIL/CIN1 and compare HPV RNA ISH results to expert-adjudicated morphologic diagnosis to assess whether this assay can help routine cases attain the existing "gold standard" of morphologic consensus diagnosis. We also assess whether this criterion standard can be further improved by integration of HPV RNA ISH results. A consensus diagnosis of intraepithelial lesion (CIN1) was confirmed in 61% of cases, whereas 57% were HPV RNA. HPV-RNA positivity was 84% sensitive and 86% specific for an expert-adjudicated diagnosis of CIN1. Conversely, consensus diagnosis was 90% sensitive and 78% specific for the presence of HPV RNA. Integrating RNA ISH into morphologic review led to further reclassification of 10% of cases, resulting in 95% sensitivity and 98% specificity of HPV RNA ISH for a CIN1 diagnosis and 98% sensitivity and 92% specificity of CIN1 for the presence of HPV RNA. These findings suggest that judicious use of HPV RNA ISH can improve the accuracy of LSIL/CIN1 diagnosis for morphologically ambiguous cases.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?