Kozicky LK, Menzies SC, Hotte N, Madsen KL, Sly LM.
PMID: 31054259 | DOI: 10.1002/eji.201848014
Intravenous immunoglobulin (IVIg) is used to treat immune-mediated diseases but its mechanism of action is poorly understood. We have reported that co-treatment with IVIg and lipopolysaccharide activates macrophages to produce large amounts of anti-inflammatory IL-10 in vitro. Thus, we asked whether IVIg-treated macrophages or IVIg could reduce intestinal inflammation in mice during dextran sulfate sodium (DSS)-induced colitis by inducing macrophage IL-10 production in vivo. Adoptive transfer of IVIg-treated macrophages reduces intestinal inflammation in mice and collagen accumulation post-DSS. IVIg treatment also reduces DSS-induced intestinal inflammation and its activity is dependent on the Fc portion of the antibody. Ex vivo, IVIg induces IL-10 production and reduces IL-12/23p40 and IL-1β production in colon explant cultures. Co-staining tissues for mRNA, we demonstrate that macrophages are the source of IL-10 in IVIg-treated mice; and using IL-10-GFP reporter mice, we demonstrate that IVIg induces IL-10 production by intestinal macrophages. Finally, IVIg-mediated protection is lost in mice deficient in macrophage IL-10 production (LysMcre+/- IL-10fl/fl mice). Together, our data demonstrate a novel, in vivo mechanism of action for IVIg. IVIg-treated macrophages or IVIg could be used to treat people with intestinal inflammation and may be particularly useful for people with inflammatory bowel disease, who are refractory to therapy.
Mucosal IFNγ production and potential role in protection in Escherichia coli O157:H7 vaccinated and challenged cattle
Schaut, RG;Palmer, MV;Boggiatto, PM;Kudva, IT;Loving, CL;Sharma, VK;
PMID: 33963240 | DOI: 10.1038/s41598-021-89113-7
Shiga-toxin producing Escherichia coli O157:H7 (O157)-based vaccines can provide a potential intervention strategy to limit foodborne zoonotic transmission of O157. While the peripheral antibody response to O157 vaccination has been characterized, O157-specific cellular immunity at the rectoanal junction (RAJ), a preferred site for O157 colonization, remains poorly described. Vaccine induced mucosal O157-specific antibodies likely provide some protection, cellular immune responses at the RAJ may also play a role in protection. Distinct lymphoid follicles were increased in the RAJ of vaccinated/challenged animals. Additionally, increased numbers of interferon (IFN)γ-producing cells and γδ + T cells were detected in the follicular region of the RAJ of vaccinated/challenged animals. Likewise, adjuvanted-vaccine formulation is critical in immunogenicity of the O157 parenteral vaccine. Local T cell produced IFNγ may impact epithelial cells, subsequently limiting O157 adherence, which was demonstrated using in vitro attachment assays with bovine epithelial cells. Thus, distinct immune changes induced at the mucosa of vaccinated and challenged animals provide insight of mechanisms associated with limiting O157 fecal shedding. Enhancing mucosal immunity may be critical in the further development of efficacious vaccines for controlling O157 in ruminants and thus limiting O157 transmission to humans.
Influence of the microenvironment on modulation of the host response by typhoid toxin
Martin, OCB;Bergonzini, A;Lopez Chiloeches, M;Paparouna, E;Butter, D;Theodorou, SDP;Haykal, MM;Boutet-Robinet, E;Tebaldi, T;Wakeham, A;Rhen, M;Gorgoulis, VG;Mak, T;Pateras, IS;Frisan, T;
PMID: 33826883 | DOI: 10.1016/j.celrep.2021.108931
Bacterial genotoxins cause DNA damage in eukaryotic cells, resulting in activation of the DNA damage response (DDR) in vitro. These toxins are produced by Gram-negative bacteria, enriched in the microbiota of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. However, their role in infection remains poorly characterized. We address the role of typhoid toxin in modulation of the host-microbial interaction in health and disease. Infection with a genotoxigenic Salmonella protects mice from intestinal inflammation. We show that the presence of an active genotoxin promotes DNA fragmentation and senescence in vivo, which is uncoupled from an inflammatory response and unexpectedly associated with induction of an anti-inflammatory environment. The anti-inflammatory response is lost when infection occurs in mice with acute colitis. These data highlight a complex context-dependent crosstalk between bacterial-genotoxin-induced DDR and the host immune response, underlining an unexpected role for bacterial genotoxins.
Inflamm Bowel Dis. 2017 Nov;23(11):1950-1961.
Shouval DS, Konnikova L, Griffith AE, Wall SM, Biswas A, Werner L, Nunberg M, Kammermeier J, Goettel JA, Anand R, Chen H, Weiss B, Li J, Loizides A, Yerushalmi B, Yanagi T, Beier R, Conklin LS, Ebens CL, Santos FGMS, Sherlock M, Goldsmith JD, Kotlarz D, Glover SC, Shah N, Bousvaros A, Uhlig HH, Muise AM, Klein C, Snapper SB.
PMID: 29023267 | DOI: 10.1097/MIB.0000000000001270
Abstract BACKGROUND: IL10 receptor (IL10R) deficiency causes severe infantile-onset inflammatory bowel disease. Intact IL10R-dependent signals have been shown to be important for innate and adaptive immune cell functions in mice. We have previously reported a key role of IL10 in the generation and function of human anti-inflammatory macrophages. Independent of innate immune cell defects, the aim of the current study was to determine the role of IL10R signaling in regulating human CD4 T-cell function. METHODS: Peripheral blood mononuclear cells and intestinal biopsies cells were collected from IL10/IL10R-deficient patients and controls. Frequencies of CD4 T-cell subsets, naive T-cell proliferation, regulatory T cell (Treg)-mediated suppression, and Treg and TH17 generation were determined by flow cytometry. Transcriptional profiling was performed by NanoString and quantitative real-time polymerase chain reaction. RNA in situ hybridization was used to determine the quantities of various transcripts in intestinal mucosa. RESULTS: Analysis of 16 IL10- and IL10R-deficient patients demonstrated similar frequencies of peripheral blood and intestinal Tregs, compared with control subjects. In addition, in vitro Treg suppression of CD4 T-cell proliferation and generation of Treg were not dependent on IL10R signaling. However, IL10R-deficient T naive cells exhibited higher proliferative capacity, a strong TH17 signature, and an increase in polarization toward TH17 cells, compared with controls. Moreover, the frequency of TH17 cells was increased in the colon and ileum of IL10R-deficient patients. Finally, we show that stimulation of IL10R-deficient Tregs in the presence of IL1β leads to enhanced production of IL17A. CONCLUSIONS: IL10R signaling regulates TH17 polarization and T-cell proliferation in humans but is not required for the generation and in vitro suppression of Tregs. Therapies targeting the TH17 axis might be beneficial for IL10- and IL10R-deficient patients as a bridge to allogeneic hematopoietic stem cell transplantation.
Boroughs AC, Larson RC, Choi BD, Bouffard AA, Riley LS, Schiferle E, Kulkarni AS, Cetrulo CL, Ting D, Blazar BR, Demehri S and Maus MV
PMID: 30869654 | DOI: 10.1172/jci.insight.126194
Regulatory T cells (Tregs) are key modulators of inflammation and are important for the maintenance of peripheral tolerance. Adoptive immunotherapy with polyclonal Tregs holds promise in organ transplantation, graft-versus-host disease, and autoimmune diseases, but may be enhanced by antigen-specific, long-lived Treg cells. We modified primary human Tregs with chimeric antigen-receptors (CARs) bearing different costimulatory domains and performed in vitro analyses of their phenotype and function. While neither the presence of a CAR nor the type of costimulation domain influenced Foxp3 expression in Tregs, the costimulation domain of the CARs affected CAR Treg surface phenotype and functions such as cytokine production. Furthermore, signaling from the CD28 costimulation domain maintained CAR Treg suppressor function, whereas 4-1B costimulation did not. In vivo, CAR Tregs accumulated at sites expressing target antigen, and suppressed antigen specific effector T cell responses; however, only CAR Tregs with CD28 signaling domains were potent inhibitors of effector T cell mediated graft rejection in vivo. Our findings support the use of CD28 based CAR-Tregs for tissue specific immune suppression in the clinic.
Cancer immunology research
Bugatti, M;Bergamini, M;Missale, F;Monti, M;Laura, A;Pezzali, I;Picinoli, S;Caronni, N;Missolo-Koussou, Y;Helft, J;Benvenuti, F;Vermi, W;
PMID: 36122412 | DOI: 10.1158/2326-6066.CIR-22-0271
TIM4 has previously been associated with antitumor immunity, yet the pattern of expression and the function of this receptor across human cancer tissues remains poorly explored. Here we combined extensive immunolabeling of human tissues with in-silico analysis of pan-cancer transcriptomic datasets to explore the clinical significance of TIM4 expression. Our results unveil that TIM4 is expressed on a fraction of cavity macrophages (CATIM4+MΦ) of carcinoma patients. Moreover, we uncover a high expression of TIM4 on macrophages of the T-cell zone of the carcinoma-associated tertiary lymphoid structures (TLSTIM4+MΦ). In-silico analysis of a pan-cancer dataset revealed a positive correlation between TIM4 expression and markers of B cells, effector CD8+ T cells and a 12-chemokine signature defining tertiary lymphoid structure. In addition, TLSTIM4+MΦ were enriched in cancers displaying microsatellite instability and high CD8+ T-cell infiltration, confirming their association with immune-reactive tumors. Both CATIM4+MΦ and TLSTIM4+MΦ express FOLR2, a marker of tissue-resident MΦ. However, CATIM4+MΦ had higher expression of the immunosuppressive molecules TREM2, IL10 and TGFβ as compared to TLSTIM4+MΦ. By analyzing a scRNA-seq dataset of tumor-associated myeloid cells we identified two TIM4+FOLR2+ clusters coherent with CATIM4+MΦ and TLSTIM4+MΦ. We defined specific gene-signatures for each subset and found that the CATIM4+ MΦ signature was associated with worse patient survival. In contrast, TLSTIM4+MΦ gene-signature positively correlate with better prognosis. Together these data illustrate that TIM4 marks two distinct macrophage populations with distinct phenotype and tissue localization and that may have opposing roles in tumor immunity.
Clinical & translational immunology
Missale, F;Bugatti, M;Marchi, F;Mandelli, GE;Bruni, M;Palmerini, G;Monti, M;Bozzola, AM;Arena, G;Guastini, L;Boggio, M;Parrinello, G;Peretti, G;Vermi, W;
PMID: 37122496 | DOI: 10.1002/cti2.1445
Laryngeal squamous cell carcinomas (LSCCs) typically have an excellent prognosis for stage I tumors but a significant risk of locoregional and distant recurrence for intermediate to advanced disease. This study will investigate the clinical relevance of the tumor microenvironment in a large cohort of treatment-naïve patients affected by stage II-IV LSCC.Whole slide-based digital pathology analysis was applied to measure six immune cell populations identified by immunohistochemistry (IHC) staining for CD3, CD8, CD20, CD66b, CD163 and CD38. Survival analysis was performed by Cox proportional hazards models and unsupervised hierarchical clustering using the k-means method. Double IHC staining and in-situ hybridisation by RNAscope allowed further analysis of a protumoral B cell population.A cohort of 98 patients was enrolled and analysed. The cluster of immune-infiltrated LSCCs demonstrated a significantly worse disease-specific survival rate. We also discovered a new association between high CD20+ B cells and a greater risk of distant recurrence. The phenotypic analysis of infiltrating CD20+ B cells showed a naïve (BCL6-CD27-Mum1-) regulatory phenotype, producing TGFβ but not IL10, according to an active TGFβ pathway, as proved by positive pSMAD2 staining.The identification of regulatory B cells in the context of LSCC, along with the activation of the TGFβ pathway, could provide the basis for new trials investigating the efficacy of already available molecules targeting the TGFβ pathway in the treatment of LSCC.