Razumilava N, Shiota J, Mohamad Zaki NH, Ocadiz-Ruiz R, Cieslak CM, Zakharia K, Allen BL, Gores GJ, Samuelson LC, Merchant JL.
| DOI: 10.1002/hep4.1295
Hedgehog (HH) signaling participates in hepatobiliary repair after injury and is activated in patients with cholangiopathies. Cholangiopathies are associated with bile duct (BD) hyperplasia, including expansion of peribiliary glands, the niche for biliary progenitor cells. The inflammation‐associated cytokine interleukin (IL)‐33 is also up‐regulated in cholangiopathies, including cholangiocarcinoma. We hypothesized that HH signaling synergizes with IL‐33 in acute inflammation‐induced BD hyperplasia. We measured extrahepatic BD (EHBD) thickness and cell proliferation with and without an IL‐33 challenge in wild‐type mice, mice overexpressing Sonic HH (pCMV‐Shh), and mice with loss of the HH pathway effector glioma‐associated oncogene 1 (Gli1lacZ/lacZ). LacZ reporter mice were used to map the expression of HH effector genes in mouse EHBDs. An EHBD organoid (BDO) system was developed to study biliary progenitor cells in vitro. EHBDs from the HH overexpressing pCMV‐Shh mice showed increased epithelial cell proliferation and hyperplasia when challenged with IL‐33. In Gli1lacZ/lacZ mice, we observed a decreased proliferative response to IL‐33 and decreased expression of Il6. The HH ligands Shh and Indian HH (Ihh) were expressed in epithelial cells, whereas the transcriptional effectors Gli1, Gli2, and Gli3 and the HH receptor Patched1 (Ptch1) were expressed in stromal cells, as assessed by in situ hybridization and lacZ reporter mice. Although BDO cells lacked canonical HH signaling, they expressed the IL‐33 receptor suppression of tumorigenicity 2. Accordingly, IL‐33 treatment directly induced BDO cell proliferation in a nuclear factor κB‐dependent manner. Conclusion: HH ligand overexpression enhances EHBD epithelial cell proliferation induced by IL‐33. This proproliferative synergism of HH and IL‐33 involves crosstalk between HH ligand‐producing epithelial cells and HH‐responding stromal cells.
Journal of Neuroendocrinology
Decourt, C;Connolly, G;Ancel, C;Inglis, M;Anderson, G;
| DOI: 10.1111/jne.13190
Agouti-related peptide (AgRP) neurons are thought to indirectly regulate the activity of hypothalamic gonadotrophin-releasing hormone neurons which control fertility. AgRP neurons also drive caloric intake and are modulated by metabolically-relevant hormones, providing a link to the hypothalamic-pituitary-gonadal axis. In mice expressing Cre-dependant designer receptors (DREADDs) in AgRP neurons, we activated or silenced these neurons in vivo using the synthetic ligand clozapine-N-oxide (CNO) to observe the effect of AgRP neuron activity on timing of puberty. To validate these animals, we chronically treated both stimulatory (hM3Dq) and inhibitory (hM4Di) DREADD × AgRP-Cre mice with CNO, observing a pronounced increase and decrease of food intake, respectively, consistent with the known orexigenic effects of these neurons. RNAscope was performed to visually confirm the activation of AgRP neurons. Puberty onset was assessed in males and females. There was no effect on preputial separation in males or vaginal opening and first oestrus in females after CNO treatment from day 26 to 30 to chronically modulate AgRP neurons. Next, to determine whether the delay in puberty onset occurring in response to neonatal underfeeding could be overcome by inhibiting AgRP neuronal activity, mice were raised in large (neonatally underfed) or normal litter sizes. The delay in puberty from underfeeding was completely reversed in CNO-treated AgRP-hM4Di male mice. These data highlight the inhibitory role of AgRP neurons to delay puberty onset when undernutrition occurs during the neonatal period, at least in male mice.
Journal of cellular physiology
Zhang, CL;Lin, YZ;Wu, Q;Yan, C;Wong, MW;Zeng, F;Zhu, P;Bowes, K;Lee, K;Zhang, X;Song, ZY;Lin, S;Shi, YC;
PMID: 35312067 | DOI: 10.1002/jcp.30719
Chronic high salt intake is one of the leading causes of hypertension. Salt activates the release of the key neurotransmitters in the hypothalamus such as vasopressin to increase blood pressure, and neuropepetide Y (NPY) has been implicated in the modulation of vasopressin levels. NPY in the hypothalamic arcuate nucleus (Arc) is best known for its control in appetite and energy homeostasis, but it is unclear whether it is also involved in the development of salt-induced hypertension. Here, we demonstrate that wild-type mice given 2% NaCl salt water for 8 weeks developed hypertension which was associated with marked downregulation of NPY expression in the hypothalamic Arc as demonstrated in NPY-GFP reporter mice as well as by in situ hybridization analysis. Furthermore, salt intake activates neurons in the hypothalamic paraventricular nucleus (PVN) where mRNA expression of brain-derived neurotrophic factor (BDNF) and vasopressin was found to be upregulated, leading to elevated serum vasopressin levels. This finding suggests an inverse correlation between the Arc NPY level and expression of vasopressin and BDNF in the PVN. Specific restoration of NPY by injecting AAV-Cre recombinase into the Arc only of the NPY-targeted mutant mice carrying a loxP-flanked STOP cassette reversed effects of salt intake on vasopressin and BDNF expression, leading to a normalization of salt-dependent blood pressure. In summary, our study uncovers an important Arc NPY-originated neuronal circuitry that could sense and respond to peripheral electrolyte signals and thereby regulate hypertension via vasopressin and BDNF in the PVN.
Cocaine Augments Dopamine Mediated Inhibition of Neuronal Activity in the Dorsal Bed Nucleus of the Stria Terminalis
The Journal of neuroscience : the official journal of the Society for Neuroscience
Melchior, JR;Perez, RE;Salimando, GJ;Luchsinger, JR;Basu, A;Winder, DG;
PMID: 34035141 | DOI: 10.1523/JNEUROSCI.0284-21.2021
The dorsal region of the bed nucleus of the stria terminalis (dBNST) receives substantial dopaminergic input which overlaps with norepinephrine input implicated in stress responses. Using ex vivo fast scan cyclic voltammetry in male C57BL6 mouse brain slices, we demonstrate that electrically stimulated dBNST catecholamine signals are of substantially lower magnitude and have slower uptake rates compared to caudate signals. Dopamine terminal autoreceptor activation inhibited roughly half of the catecholamine transient, and noradrenergic autoreceptor activation produced an ∼30% inhibition. Dopamine transporter blockade with either cocaine or GBR12909 significantly augmented catecholamine signal duration. We optogenetically targeted dopamine terminals in the dBNST of transgenic (TH:Cre) mice of either sex and, using ex vivo whole-cell electrophysiology, we demonstrate that optically stimulated dopamine release induces slow outward membrane currents and an associated hyperpolarization response in a subset of dBNST neurons. These cellular responses had a similar temporal profile to dopamine release, were significantly reduced by the D2/D3 receptor antagonist raclopride, and were potentiated by cocaine. Using in vivo fiber photometry in male C57BL6 mice during training sessions for cocaine conditioned place preference, we show that acute cocaine administration results in a significant inhibition of calcium transient activity in dBNST neurons compared to saline administration. These data provide evidence for a mechanism of dopamine-mediated cellular inhibition in the dBNST and demonstrate that cocaine augments this inhibition while also decreasing net activity in the dBNST in a drug reinforcement paradigm.SIGNIFICANCE STATEMENTThe dorsal bed nucleus of the stria terminalis (dBNST) is a region highly implicated in mediating stress responses, however, the dBNST also receives dopaminergic inputs from classically defined drug reward pathways. Here we used various techniques to demonstrate that dopamine signaling within the dorsal BNST region has inhibitory effects on population activity. We show that cocaine, an abused psychostimulant, augments both catecholamine release and dopamine-mediated cellular inhibition in this region. We also demonstrate that cocaine administration reduces population activity in the dBNST, in vivo Together these data support a mechanism of dopamine-mediated inhibition within the dBNST, providing a means by which drug-induced elevations in dopamine signaling may inhibit dBNST activity to promote drug reward.
Lorsch ZS, Loh YHE, Purushothaman I, Walker DM, Parise EM, Salery M ,Cahill ME, Hodes GE, Pfau ML, Kronman H, Hamilton PJ, Issler O, Labonté B, Symonds AE, Zucker M, Zhang TY, Meaney MJ, Russo SJ, Shen L, Bagot RC, Nestler EJ.
PMID: 29549264 | DOI: 10.1038/s41467-018-03567-4
Most people exposed to stress do not develop depression. Animal models have shown that stress resilience is an active state that requires broad transcriptional adaptations, but how this homeostatic process is regulated remains poorly understood. In this study, we analyze upstream regulators of genes differentially expressed after chronic social defeat stress. We identify estrogen receptor α (ERα) as the top regulator of pro-resilient transcriptional changes in the nucleus accumbens (NAc), a key brain reward region implicated in depression. In accordance with these findings, nuclear ERα protein levels are altered by stress in male and female mice. Further, overexpression of ERα in the NAc promotes stress resilience in both sexes. Subsequent RNA-sequencing reveals that ERα overexpression in NAc reproduces the transcriptional signature of resilience in male, but not female, mice. These results indicate that NAc ERα is an important regulator of pro-resilient transcriptional changes, but with sex-specific downstream targets.
Gupta, R;Wang, M;Ma, Y;Offermanns, S;Whim, MD;
PMID: 35595517 | DOI: 10.1210/endocr/bqac077
During fasting, increased sympatho-adrenal activity leads to epinephrine release and multiple forms of plasticity within the adrenal medulla including an increase in the strength of the preganglionic → chromaffin cell synapse and elevated levels of AgRP, a peptidergic co-transmitter in chromaffin cells. Although these changes contribute to the sympathetic response, how fasting evokes this plasticity is not known. Here we report these effects involve activation of GPR109A (HCAR2). The endogenous agonist of this G protein-coupled receptor is β-hydroxybutyrate, a ketone body whose levels rise during fasting. In wild type animals, 24 hr fasting increased AgRP-ir in adrenal chromaffin cells but this effect was absent in GPR109A knockout mice. GPR109A agonists increased AgRP-ir in isolated chromaffin cells through a GPR109A- and pertussis toxin-sensitive pathway. Incubation of adrenal slices in nicotinic acid, a GPR109A agonist, mimicked the fasting-induced increase in the strength of the preganglionic → chromaffin cell synapse. Finally, RT-PCR experiments confirmed the mouse adrenal medulla contains GPR109A mRNA. These results are consistent with the activation of a GPR109A signaling pathway located within the adrenal gland. Because fasting evokes epinephrine release, which stimulates lipolysis and the production of β-hydroxybutyrate, our results indicate that chromaffin cells are components of an autonomic-adipose-hepatic feedback circuit. Coupling a change in adrenal physiology to a metabolite whose levels rise during fasting is presumably an efficient way to co-ordinate the homeostatic response to food deprivation.
Porniece Kumar, M;Cremer, AL;Klemm, P;Steuernagel, L;Sundaram, S;Jais, A;Hausen, AC;Tao, J;Secher, A;Pedersen, TÅ;Schwaninger, M;Wunderlich, FT;Lowell, BB;Backes, H;Brüning, JC;
PMID: 34931084 | DOI: 10.1038/s42255-021-00499-0
Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.
Claflin KE, Sandgren JA, Lambertz AM, Weidemann BJ, Littlejohn NK, Burnett CM, Pearson NA, Morgan DA, Gibson-Corley KN, Rahmouni K, Grobe JL.
PMID: 28263184 | DOI: 10.1172/JCI88641
Leptin contributes to the control of resting metabolic rate (RMR) and blood pressure (BP) through its actions in the arcuate nucleus (ARC). The renin-angiotensin system (RAS) and angiotensin AT1 receptors within the brain are also involved in the control of RMR and BP, but whether this regulation overlaps with leptin's actions is unclear. Here, we have demonstrated the selective requirement of the AT1A receptor in leptin-mediated control of RMR. We observed that AT1A receptors colocalized with leptin receptors (LEPRs) in the ARC. Cellular coexpression of AT1A and LEPR was almost exclusive to the ARC and occurred primarily within neurons expressing agouti-related peptide (AgRP). Mice lacking the AT1A receptor specifically in LEPR-expressing cells failed to show an increase in RMR in response to a high-fat diet and deoxycorticosterone acetate-salt (DOCA-salt) treatments, but BP control remained intact. Accordingly, loss of RMR control was recapitulated in mice lacking AT1A in AgRP-expressing cells. We conclude that angiotensin activates divergent mechanisms to control BP and RMR and that the brain RAS functions as a major integrator for RMR control through its actions at leptin-sensitive AgRP cells of the ARC.
Khlghatyan J, Quintana C, Parent M, Beaulieu JM.
PMID: 30295716 | DOI: 10.1093/cercor/bhy261
Cortical D2 dopamine receptor (Drd2) have mostly been examined in the context of cognitive function regulation and neurotransmission modulation of medial prefrontal cortex by principal neurons and parvalbumin positive, fast-spiking, interneurons in schizophrenia. Early studies suggested the presence of D2 receptors in several cortical areas, albeit with major technical limitations. We used combinations of transgenic reporter systems, recombinase activated viral vectors, quantitative translatome analysis, and high sensitivity in situ hybridization to identify D2 receptor expressing cells and establish a map of their respective projections. Our results identified previously uncharacterized clusters of D2 expressing neurons in limbic and sensory regions of the adult mouse brain cortex. Characterization of these clusters by translatome analysis and cell type specific labeling revealed highly heterogeneous expression of D2 receptors in principal neurons and various populations of interneurons across cortical areas. Transcript enrichment analysis also demonstrated variable levels of D2 receptor expression and several orphan G-protein-coupled receptors coexpression in different neuronal clusters, thus suggesting strategies for genetic and therapeutic targeting of D2 expressing neurons in specific cortical areas. These results pave the way for a thorough re-examination of cortical D2 receptor functions, which could provide information about neuronal circuits involved in psychotic and mood disorders.
Chen X, Liu Z, Ma C, Ma L, Liu X.
PMID: - | DOI: 10.3389/fnbeh.2019.00110
Parvalbumin (PV) expressing GABAergic interneurons provide large source of GABA to spiny projection neurons (SPNs) in the striatum. However, the roles of PV+ interneurons in the regulation of SPNs in the ventral striatum and emotional states are largely unknown. Here, we investigated whether stimulation of ventral striatal (accumbal) PV+ interneurons would drive emotional valence in mice. We found that during conditioned place preference (CPP) training, activation of accumbal PV+ interneurons evoked place preference while suppressing them resulted in conditioned place aversion (CPA). Activation of PV+interneurons during place conditioning increased Fos expression in SPNs in the direct pathway (dSPNs) and impaired lithium chloride-induced CPA. Activation of dSPNs and SPNs in the indirect pathway (iSPNs) induced CPP and CPA, respectively; conversely, suppression of dSPNs or iSPNs induced CPA or CPP. In addition, activation or suppression of calretinin-expressing (CR) GABAergic interneurons did not induce place preference or aversion. These data suggest that PV+ interneurons can bidirectionally determine the emotional valence through their regulation of accumbal SPN activities and raise the possibility that manipulation of PV+ interneuron activity may have the potential to alter emotional valence and treat related mental disorders.
Yu, B;Zhang, Q;Lin, L;Zhou, X;Ma, W;Wen, S;Li, C;Wang, W;Wu, Q;Wang, X;Li, XM;
PMID: 36788214 | DOI: 10.1038/s41421-022-00506-y
The amygdala, or an amygdala-like structure, is found in the brains of all vertebrates and plays a critical role in survival and reproduction. However, the cellular architecture of the amygdala and how it has evolved remain elusive. Here, we generated single-nucleus RNA-sequencing data for more than 200,000 cells in the amygdala of humans, macaques, mice, and chickens. Abundant neuronal cell types from different amygdala subnuclei were identified in all datasets. Cross-species analysis revealed that inhibitory neurons and inhibitory neuron-enriched subnuclei of the amygdala were well-conserved in cellular composition and marker gene expression, whereas excitatory neuron-enriched subnuclei were relatively divergent. Furthermore, LAMP5+ interneurons were much more abundant in primates, while DRD2+ inhibitory neurons and LAMP5+SATB2+ excitatory neurons were dominant in the human central amygdalar nucleus (CEA) and basolateral amygdalar complex (BLA), respectively. We also identified CEA-like neurons and their species-specific distribution patterns in chickens. This study highlights the extreme cell-type diversity in the amygdala and reveals the conservation and divergence of cell types and gene expression patterns across species that may contribute to species-specific adaptations.
Chen, G;Lai, S;Bao, G;Ke, J;Meng, X;Lu, S;Wu, X;Xu, H;Wu, F;Xu, Y;Xu, F;Bi, GQ;Peng, G;Zhou, K;Zhu, Y;
PMID: 36753418 | DOI: 10.1016/j.celrep.2023.112069
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.