Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (4)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (11) Apply Lgr5 filter
  • V-nCoV2019-S (8) Apply V-nCoV2019-S filter
  • SARS-CoV-2 (6) Apply SARS-CoV-2 filter
  • Axin2 (5) Apply Axin2 filter
  • HPV-HR18 (5) Apply HPV-HR18 filter
  • HPV E6/E7 (4) Apply HPV E6/E7 filter
  • PD-L1 (4) Apply PD-L1 filter
  • c-MYC (4) Apply c-MYC filter
  • SOX2 (3) Apply SOX2 filter
  • CD68 (3) Apply CD68 filter
  • CD3E (3) Apply CD3E filter
  • NANOG (3) Apply NANOG filter
  • Klf4 (3) Apply Klf4 filter
  • OLFM4 (3) Apply OLFM4 filter
  • OCT4 (3) Apply OCT4 filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Cd8a (2) Apply Cd8a filter
  • CSF1R (2) Apply CSF1R filter
  • CXCL10 (2) Apply CXCL10 filter
  • CXCL13 (2) Apply CXCL13 filter
  • Ifng (2) Apply Ifng filter
  • Gfral (2) Apply Gfral filter
  • GDF15 (2) Apply GDF15 filter
  • GLP1R (2) Apply GLP1R filter
  • GREM1 (2) Apply GREM1 filter
  • (-) Remove IDO1 filter IDO1 (2)
  • Vegfa (2) Apply Vegfa filter
  • MDM2 (2) Apply MDM2 filter
  • Tgfbr1 (2) Apply Tgfbr1 filter
  • PDCD1 (2) Apply PDCD1 filter
  • PPIB (2) Apply PPIB filter
  • SMOC2 (2) Apply SMOC2 filter
  • BCL6 (2) Apply BCL6 filter
  • sox10 (2) Apply sox10 filter
  • Smad7 (2) Apply Smad7 filter
  • HPV16/18 (2) Apply HPV16/18 filter
  • Siglech (2) Apply Siglech filter
  • GPC3 (2) Apply GPC3 filter
  • Ly6a (2) Apply Ly6a filter
  • VGAT (2) Apply VGAT filter
  • Il-6 (2) Apply Il-6 filter
  • (-) Remove HEV filter HEV (2)
  • HPV HR18 (2) Apply HPV HR18 filter
  • IFN-β (2) Apply IFN-β filter
  • HSATII (2) Apply HSATII filter
  • MALAT1 (1) Apply MALAT1 filter
  • ALB (1) Apply ALB filter
  • Csf3 (1) Apply Csf3 filter
  • Sox9 (1) Apply Sox9 filter

Product

  • (-) Remove RNAscope 2.5 LS Assay filter RNAscope 2.5 LS Assay (4)

Research area

  • Cancer (2) Apply Cancer filter
  • Cardiac (1) Apply Cardiac filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease (1) Apply Infectious Disease filter

Category

  • Publications (4) Apply Publications filter
Detection of viral hepatitis E in clinical liver biopsies.

Histopathology

2017 May 24

Prost S, Crossan CL, Dalton HR, De Man RA, Kamar N, Selves J, Dhaliwal C, Scobie L, Bellamy COC.
PMID: 28543644 | DOI: 10.1111/his.13266

Abstract

AIMS:

to determine the relative utility of in situ testing for hepatitis E virus (HEV) RNA and paraffin section PCR to diagnose HEV infection in paraffin-embedded clinical liver biopsies, and to correlate with clinico-pathological characteristics.

METHODS AND RESULTS:

We evaluated in situ and quantitative PCR (qPCR)-based approaches to identifying HEV in clinical liver biopsies from infected patients from multiple centers, correlating with clinical setting (immunocompetent, allograft or immunosuppressed native liver) and histologic findings. 36 biopsies from 29 patients had histologic data, of which 27 and 23 biopsies had satisfactory material for in situ RNA testing and tissue qPCR respectively. Both approaches specifically identified HEV infection, but tissue qPCR was significantly more sensitive than in situ testing (P=0.035). In immunocompetent but not immunosuppressed patients the tissue qPCR yield correlated with the severity of lobular hepatitis (rho=0.94, P<0.001). qPCR viral yield was comparably high in allografts and immunosuppressed native livers and significantly greater than with native liver infection. Immunosuppressed patients showed reduced severity of hepatitis and cholestatic changes, compared with immunocompetent patients. Indeed, HEV-infected liver allografts could show minimal hepatitis for many months. In individual cases each technique was useful when serum was not available to retrospectively identify chronic infection (in biopsies taken 4-31 months before diagnosis), to identify persistent/residual infection when contemporary serum PCR was negative and to identify cleared infection.

CONCLUSIONS:

qPCR is better than in situ RNA testing to identify HEV infection in paraffin-embedded liver biopsies and has diagnostic utility in selected settings.

Advanced detection strategies for cardiotropic virus infection in a cohort study of heart failure patients

Laboratory investigation; a journal of technical methods and pathology

2021 Oct 04

Hanson, PJ;Liu-Fei, F;Minato, TA;Hossain, AR;Rai, H;Chen, VA;Ng, C;Ask, K;Hirota, JA;McManus, BM;
PMID: 34608239 | DOI: 10.1038/s41374-021-00669-4

The prevalence and contribution of cardiotropic viruses to various expressions of heart failure are increasing, yet primarily underappreciated and underreported due to variable clinical syndromes, a lack of consensus diagnostic standards and insufficient clinical laboratory tools. In this study, we developed an advanced methodology for identifying viruses across a spectrum of heart failure patients. We designed a custom tissue microarray from 78 patients with conditions commonly associated with virus-related heart failure, conditions where viral contribution is typically uncertain, or conditions for which the etiological agent remains suspect but elusive. Subsequently, we employed advanced, highly sensitive in situ hybridization to probe for common cardiotropic viruses: adenovirus 2, coxsackievirus B3, cytomegalovirus, Epstein-Barr virus, hepatitis C and E, influenza B and parvovirus B19. Viral RNA was detected in 46.4% (32/69) of heart failure patients, with 50% of virus-positive samples containing more than one virus. Adenovirus 2 was the most prevalent, detected in 27.5% (19/69) of heart failure patients, while in contrast to previous reports, parvovirus B19 was detected in only 4.3% (3/69). As anticipated, viruses were detected in 77.8% (7/9) of patients with viral myocarditis and 37.5% (6/16) with dilated cardiomyopathy. Additionally, viruses were detected in 50% of patients with coronary artery disease (3/6) and hypertrophic cardiomyopathy (2/4) and in 28.6% (2/7) of transplant rejection cases. We also report for the first time viral detection within a granulomatous lesion of cardiac sarcoidosis and in giant cell myocarditis, conditions for which etiological agents remain unknown. Our study has revealed a higher than anticipated prevalence of cardiotropic viruses within cardiac muscle tissue in a spectrum of heart failure conditions, including those not previously associated with a viral trigger or exacerbating role. Our work forges a path towards a deeper understanding of viruses in heart failure pathogenesis and opens possibilities for personalized patient therapeutic approaches.
Epacadostat Plus Pembrolizumab in Patients With Advanced Solid Tumors: Phase I Results From a Multicenter, Open-Label Phase I/II Trial (ECHO-202/KEYNOTE-037).

J Clin Oncol. 2018 Sep 28:JCO2018789602.

2018 Sep 28

Mitchell TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, Luke JJ, Balmanoukian AS, Schmidt EV, Zhao Y, Gong X, Maleski J, Leopold L, Gajewski TF.
PMID: 30265610 | DOI: 10.1200/JCO.2018.78.9602

Abstract PURPOSE: Tumors may evade immunosurveillance through upregulation of the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. Epacadostat is a potent and highly selective IDO1 enzyme inhibitor. The open-label phase I/II ECHO-202/KEYNOTE-037 trial evaluated epacadostat plus pembrolizumab, a programmed death protein 1 inhibitor, in patients with advanced solid tumors. Phase I results on maximum tolerated dose, safety, tolerability, preliminary antitumor activity, and pharmacokinetics are reported. PATIENTS AND METHODS: Patients received escalating doses of oral epacadostat (25, 50, 100, or 300 mg) twice per day plus intravenous pembrolizumab 2 mg/kg or 200 mg every 3 weeks. During the safety expansion, patients received epacadostat (50, 100, or 300 mg) twice per day plus pembrolizumab 200 mg every 3 weeks. RESULTS: Sixty-two patients were enrolled and received one or more doses of study treatment. The maximum tolerated dose of epacadostat in combination with pembrolizumab was not reached. Fifty-two patients (84%) experienced treatment-related adverse events (TRAEs), with fatigue (36%), rash (36%), arthralgia (24%), pruritus (23%), and nausea (21%) occurring in ≥ 20%. Grade 3/4 TRAEs were reported in 24% of patients. Seven patients (11%) discontinued study treatment because of TRAEs. No TRAEs led to death. Epacadostat 100 mg twice per day plus pembrolizumab 200 mg every 3 weeks was recommended for phase II evaluation. Objective responses (per Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1) occurred in 12 (55%) of 22 patients with melanoma and in patients with non-small-cell lung cancer, renal cell carcinoma, endometrial adenocarcinoma, urothelial carcinoma, and squamous cell carcinoma of the head and neck. The pharmacokinetics of epacadostat and pembrolizumab and antidrug antibody rate were comparable to historical controls for monotherapies. CONCLUSION: Epacadostat in combination with pembrolizumab generally was well tolerated and had encouraging antitumor activity in multiple advanced solid tumors.
Immune-regulated IDO1-dependent tryptophan metabolism is source of one-carbon units for pancreatic cancer and stellate cells

Molecular cell

2021 Apr 04

Newman, AC;Falcone, M;Huerta Uribe, A;Zhang, T;Athineos, D;Pietzke, M;Vazquez, A;Blyth, K;Maddocks, ODK;
PMID: 33831358 | DOI: 10.1016/j.molcel.2021.03.019

Cancer cells adapt their metabolism to support elevated energetic and anabolic demands of proliferation. Folate-dependent one-carbon metabolism is a critical metabolic process underpinning cellular proliferation supplying carbons for the synthesis of nucleotides incorporated into DNA and RNA. Recent research has focused on the nutrients that supply one-carbons to the folate cycle, particularly serine. Tryptophan is a theoretical source of one-carbon units through metabolism by IDO1, an enzyme intensively investigated in the context of tumor immune evasion. Using in vitro and in vivo pancreatic cancer models, we show that IDO1 expression is highly context dependent, influenced by attachment-independent growth and the canonical activator IFNγ. In IDO1-expressing cancer cells, tryptophan is a bona fide one-carbon donor for purine nucleotide synthesis in vitro and in vivo. Furthermore, we show that cancer cells release tryptophan-derived formate, which can be used by pancreatic stellate cells to support purine nucleotide synthesis.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?