Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (39)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • (-) Remove GFP filter GFP (26)
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (11) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (7) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (18) Apply Neuroscience filter
  • Cancer (12) Apply Cancer filter
  • Other (4) Apply Other filter
  • Inflammation (3) Apply Inflammation filter
  • CGT (2) Apply CGT filter
  • Injury (2) Apply Injury filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Developmental (1) Apply Developmental filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Hypoxia (1) Apply Hypoxia filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Infectious Disease: Astroviruses (1) Apply Infectious Disease: Astroviruses filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Liver (1) Apply Liver filter
  • Neural Mapping (1) Apply Neural Mapping filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Regeneration (1) Apply Regeneration filter
  • Sighing (1) Apply Sighing filter

Category

  • Publications (39) Apply Publications filter
PDCD1LG2 (PD-L2) RNA in situ hybridization is a sensitive,specific, and practical marker of primary mediastinal largeB-cell lymphoma

British Journal of Haematology

2017 Apr 03

Wang Z, Cook JR.
PMID: 28369778 | DOI: 10.1111/bjh.14670

Primary mediastinal large B-cell lymphoma (PMLBCL) is recognized as a distinct clinicopathological entity in the current World Health Organization classification of lymphoid neoplasms (Swerdlow et al, 2016). Gene expression profiling studies have confirmed a distinct signature in PMLBCL that differs from diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS) and partially overlaps with that found in classical Hodgkin lymphoma (Savage et al, 2003; Bea et al, 2005). In routine clinical practice, however, distinguishing between PMLBCL and DLBCL, NOS is frequently difficult, due partly to a paucity of sensitive and specific biomarkers (Martelli et al, 2008; Dorfman et al, 2012). Recent studies have shown that PMLBCL shows frequent copy number alterations or translocations involving the CD274 (PD-L1) or PDCD1LG2 (PD-L2) genes at chromosome 9p24.1, leading to overexpression of CD274 (PD-L1) and, especially, PDCD1LG (PD-L2) proteins (Shi et al, 2014; Twa & Steidl, 2015). Anti-PDCD1LG2 antibodies suitable for immunohistochemical analysis in formalin-fixed paraffin-embedded (FFPE) tissue are not currently commercially available, limiting the utility of this potential marker for routine diagnostic practice. In this study, we have performed RNA in situ hybridization (RISH) for CD274 and PDCD1LG2 RNA expression, using a standard automated immunohistochemistry (IHC) platform, and have compared the results to IHC using a commercially available anti-CD274 antibody.

Epacadostat Plus Pembrolizumab in Patients With Advanced Solid Tumors: Phase I Results From a Multicenter, Open-Label Phase I/II Trial (ECHO-202/KEYNOTE-037).

J Clin Oncol. 2018 Sep 28:JCO2018789602.

2018 Sep 28

Mitchell TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, Luke JJ, Balmanoukian AS, Schmidt EV, Zhao Y, Gong X, Maleski J, Leopold L, Gajewski TF.
PMID: 30265610 | DOI: 10.1200/JCO.2018.78.9602

Abstract PURPOSE: Tumors may evade immunosurveillance through upregulation of the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. Epacadostat is a potent and highly selective IDO1 enzyme inhibitor. The open-label phase I/II ECHO-202/KEYNOTE-037 trial evaluated epacadostat plus pembrolizumab, a programmed death protein 1 inhibitor, in patients with advanced solid tumors. Phase I results on maximum tolerated dose, safety, tolerability, preliminary antitumor activity, and pharmacokinetics are reported. PATIENTS AND METHODS: Patients received escalating doses of oral epacadostat (25, 50, 100, or 300 mg) twice per day plus intravenous pembrolizumab 2 mg/kg or 200 mg every 3 weeks. During the safety expansion, patients received epacadostat (50, 100, or 300 mg) twice per day plus pembrolizumab 200 mg every 3 weeks. RESULTS: Sixty-two patients were enrolled and received one or more doses of study treatment. The maximum tolerated dose of epacadostat in combination with pembrolizumab was not reached. Fifty-two patients (84%) experienced treatment-related adverse events (TRAEs), with fatigue (36%), rash (36%), arthralgia (24%), pruritus (23%), and nausea (21%) occurring in ≥ 20%. Grade 3/4 TRAEs were reported in 24% of patients. Seven patients (11%) discontinued study treatment because of TRAEs. No TRAEs led to death. Epacadostat 100 mg twice per day plus pembrolizumab 200 mg every 3 weeks was recommended for phase II evaluation. Objective responses (per Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1) occurred in 12 (55%) of 22 patients with melanoma and in patients with non-small-cell lung cancer, renal cell carcinoma, endometrial adenocarcinoma, urothelial carcinoma, and squamous cell carcinoma of the head and neck. The pharmacokinetics of epacadostat and pembrolizumab and antidrug antibody rate were comparable to historical controls for monotherapies. CONCLUSION: Epacadostat in combination with pembrolizumab generally was well tolerated and had encouraging antitumor activity in multiple advanced solid tumors.
WNT7B Regulates Cholangiocyte Proliferation and Function During Murine Cholestasis

Hepatology communications

2021 Aug 25

Kosar, K;Cornuet, P;Singh, S;Lee, E;Liu, S;Gayden, J;Sato, T;Freyberg, Z;Arteel, G;Nejak-Bowen, K;
PMID: 34558852 | DOI: 10.1002/hep4.1784

We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair. Wnt7b-flox mice were bred with Krt19-cre mice to deplete Wnt7b expression in only cholangiocytes (CC) or with albumin-Cre mice to delete Wnt7b expression in both hepatocytes and cholangiocytes (HC + CC). These mice were placed on a DDC diet for 1 month then killed for evaluation. Contrary to our expectations, we found that mice lacking Wnt7b from CC and HC + CC compartments had improved biliary injury, decreased cellular senescence, and lesser bile acid accumulation after DDC exposure compared to controls, along with decreased expression of inflammatory cytokines. Although Wnt7b knockout (KO) resulted in fewer proliferating cholangiocytes, CC and HC + CC KO mice on a DDC diet also had more hepatocytes expressing cholangiocyte markers compared to wild-type mice on a DDC diet, indicating that Wnt7b suppression promotes hepatocyte reprogramming. Conclusion: Wnt7b induces a proproliferative proinflammatory program in cholangiocytes, and its loss is compensated for by conversion of hepatocytes to a biliary phenotype during cholestatic injury.
Recombinant adeno-associated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain

Neurobiology of Aging

Polinski NK, Gombash SE, Manfredsson FP, Lipton JW, Kemp CJ, Cole-Strauss A, Kanaan NM, Steece-Collier K, Kuhn NC, Wohlgenant SL, Sortwell CE.
PMID:  http

Clinical trials are examining the efficacy of viral vector-mediated gene delivery for treating Parkinson’s disease (PD). While viral vector strategies have been successful in preclinical studies, to date clinical trials have disappointed. This may be due to the fact that preclinical studies fail to account for aging. Aging is the single greatest risk factor for developing PD and age alters cellular processes utilized by viral vectors. We hypothesized that the aged brain would be relatively resistant to transduction when compared to the young adult. We examined recombinant adeno-associated virus 2/5 mediated green fluorescent protein (rAAV2/5 GFP) expression in the young adult and aged rat nigrostriatal system. GFP overexpression was produced in both age groups. However, following rAAV2/5 GFP injection to the substantia nigra (SN) aged rats displayed 40-60% less GFP protein in the striatum, regardless of rat strain or duration of expression. Further, aged rats exhibited 40% fewer cells expressing GFP and 4-fold less GFP mRNA. rAAV2/5-mediated gene transfer is compromised in the aged rat midbrain, with deficiencies in early steps of transduction leading to significantly less mRNA and protein expression.
Fully automated RNAscope in situ hybridization assays for formalin-fixed paraffin-embedded cells and tissues.

J Cell Biochem.

2016 May 18

Anderson CM, Zhang B, Miller M, Butko E, Wu X, Laver T, Kernag C, Kim J, Luo Y, Lamparski H, Park E, Su N, Ma XJ.
PMID: 27191821 | DOI: 10.1002/jcb.25606.

Biomarkers such as DNA, RNA, and protein are powerful tools in clinical diagnostics and therapeutic development for many diseases. Identifying RNA expression at the single cell level within the morphological context by RNA in situ hybridization provides a great deal of information on gene expression changes over conventional techniques that analyze bulk tissue, yet widespread use of this technique in the clinical setting has been hampered by the dearth of automated RNA ISH assays. Here we present an automated version of the RNA ISH technology RNAscope that is adaptable to multiple automation platforms. The automated RNAscope assay yields a high signal-to-noise ratio with little to no background staining and results comparable to the manual assay. In addition, the automated duplex RNAscope assay was able to detect two biomarkers simultaneously. Lastly, assay consistency and reproducibility were confirmed by quantification of TATA-box binding protein (TBP) mRNA signals across multiple lots and multiple experiments. Taken together, the data presented in this study demonstrate that the automated RNAscope technology is a high performance RNA ISH assay with broad applicability in biomarker research and diagnostic assay development.

Involvement of the kynurenine pathway in breast cancer: updates on clinical research and trials

British journal of cancer

2023 Apr 11

Girithar, HN;Staats Pires, A;Ahn, SB;Guillemin, GJ;Gluch, L;Heng, B;
PMID: 37041200 | DOI: 10.1038/s41416-023-02245-7

Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
Impact of age and vector construct on striatal and nigral transgene expression

MOLECULAR THERAPY — METHODS & CLINICAL DEVELOPMENT

2016 Dec 07

Polinski NK, Manfredsson FP, Benskey MJ, Fischer DL, Kemp CJ, Steece-Collier K, Sandoval IM, Paumier KL, Sortwell CE.
PMID: - | DOI: 10.1038/mtm.2016.82

Therapeutic protein delivery using viral vectors has shown promise in preclinical models of Parkinson’s disease (PD) but clinical trial success remains elusive. This may partially be due to a failure to include advanced age as a covariate despite aging being the primary risk factor for PD. We investigated transgene expression following intracerebral injections of recombinant adeno-associated virus pseudotypes 2/2 (rAAV2/2), 2/5 (rAAV2/5), 2/9 (rAAV2/9), and lentivirus (LV) expressing green fluorescent protein (GFP) in aged versus young adult rats. Both rAAV2/2 and rAAV2/5 yielded lower GFP expression following injection to either the aged substantia nigra or striatum. rAAV2/9-mediated GFP expression was deficient in the aged striatonigral system but displayed identical transgene expression between ages in the nigrostriatal system. Young and aged rats displayed equivalent GFP levels following LV injection to the striatonigral system but LV-delivered GFP was deficient in delivering GFP to the aged nigrostriatal system. Notably, age-related transgene expression deficiencies revealed by protein quantitation were poorly predicted by GFP-immunoreactive cell counts. Further, in situ hybridization for the viral CβA promoter revealed surprisingly limited tropism for astrocytes compared to neurons. Our results demonstrate that aging is a critical covariate to consider when designing gene therapy approaches for PD.

ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification.

Nat Biotechnol.

2018 Nov 12

Rouhanifard SH, Mellis IA, Dunagin M, Bayatpour S, Jiang CL, Dardani I, Symmons O, Emert B, Torre E, Cote A, Sullivan A, Stamatoyannopoulos JA, Raj A.
PMID: 30418432 | DOI: 10.1038/nbt.4286

Methods for detecting single nucleic acids in cell and tissues, such as fluorescence in situ hybridization (FISH), are limited by relatively low signal intensity and nonspecific probe binding. Here we present click-amplifying FISH (clampFISH), a method for fluorescence detection of nucleic acids that achieves high specificity and high-gain (>400-fold) signal amplification. ClampFISH probes form a 'C' configuration upon hybridization to the sequence of interest in a double helical manner. The ends of the probes are ligated together using bio-orthogonal click chemistry, effectively locking the probes around the target. Iterative rounds of hybridization and click amplify the fluorescence intensity. We show that clampFISH enables the detection of RNA species with low-magnification microscopy and in RNA-based flow cytometry. Additionally, we show that the modular design of clampFISH probes allows multiplexing of RNA and DNA detection, that the locking mechanism prevents probe detachment in expansion microscopy, and that clampFISH can be applied in tissue samples.

Spatial and molecular profiling of the mononuclear phagocyte network in Classic Hodgkin lymphoma

Blood

2023 Feb 07

Stewart, BJ;Fergie, M;Young, M;Jones, C;Sachdeva, A;Blain, AE;Bacon, CM;Rand, V;Ferdinand, JR;James, KR;Mahbubani, KT;Hook, CE;Jonas, N;Coleman, N;Saeb-Parsy, K;Collin, M;Clatworthy, M;Behjati, S;Carey, CD;
PMID: 36758207 | DOI: 10.1182/blood.2022015575

Classic Hodgkin lymphoma (cHL) has a rich immune infiltrate, which is an intrinsic component of the neoplastic process. Malignant Hodgkin Reed-Sternberg cells (HRSC) create an immunosuppressive microenvironment by the expression of regulatory molecules, preventing T-cell activation. It has also been demonstrated that mononuclear phagocytes (MNPs) in the vicinity of HRSC express similar regulatory mechanisms in parallel, and their presence in tissue is associated with inferior patient outcomes. MNPs in cHL have hitherto been identified with a small number of canonical markers and are usually described as 'tumor-associated macrophages'. The organization of MNP networks and interactions with HRSC remains unexplored at high resolution. Here, we defined the global immune cell composition of cHL and non-lymphoma lymph nodes, integrating data across single-cell RNA sequencing, spatial transcriptomics, and multiplexed immunofluorescence. We observed that MNPs comprise multiple subsets of monocytes, macrophages and dendritic cells (DCs). Classical monocytes, macrophages and conventional DC2 were enriched in the vicinity of HRSC, but plasmacytoid DCs and activated DCs were excluded. Unexpectedly, cDCs and monocytes expressed immunoregulatory checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO, at the same level as macrophages. Expression of these molecules increased with age. We also found that classical monocytes are important signaling hubs, potentially controlling the retention of cDC2 and ThExh via CCR1-, CCR4-, CCR5-, and CXCR3-dependent signaling. Enrichment of the cDC2-monocyte-macrophage network in diagnostic biopsies is associated with early treatment failure. These results reveal unanticipated complexity and spatial polarization within the MNP compartment, further demonstrating their potential roles in immune evasion by cHL.
Assessment of PD-L1 mRNA and protein expression in non-small cell lung cancer, head and neck squamous cell carcinoma and urothelial carcinoma tissue specimens using RNAScope and immunohistochemistry.

PLoS One.

2019 Apr 15

Duncan DJ, Scott M, Scorer P, Barker C.
PMID: 30986253 | DOI: 10.1371/journal.pone.0215393

Four immunohistochemistry (IHC) diagnostic assays have been approved for tumour PD-L1 protein assessment in the clinic. However, mRNA detection by in situ hybridisation (ISH) could be utilised as an alternative to protein detection. Detecting spatial changes in gene expression provides vital prognostic and diagnostic information, particularly in immune oncology where the phenotype, cellular infiltration and immune activity status may be associated with patient survival. Translation of mRNA expression to a clinically relevant cut off or threshold is challenging due to variability between assays and the detection of different analytes. These studies aim to confirm the suitability of formalin fixed paraffin embedded (FFPE) tissue sections for use with RNA ISH. A comparison of mRNA expression and protein expression may inform the suitability of mRNA as a patient selection biomarker in a similar manner to IHC and provide evidence of a suitable scoring algorithm. Ninety patient samples, thirty for each indication of non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC) and urothelial carcinoma (UC), previously assessed using the VENTANA PD-L1 (SP263) Assay were chosen to represent a wide dynamic range of percentage tumour cell staining (TCIHC). Expression of mRNA was assessed by ISH using the RNAScope 2.5 assay and probe CD274/PD-L1 (Advanced Cell Diagnostics) including kit provided positive and negative control probes. Brightfield whole slide images of tissues were captured. The percentage of tumour cells with PD-L1 mRNA expression (%TCmRNA) and mean punctate dots/tumour cell were determined using image analysis. Differences in RNA expression between the IHC derived TCIHC≥25% and <25% groups were assessed using t-tests. For each indication, a receiver-operating characteristic (ROC) analysis identified thresholds for patient classification using %TCmRNA and dots/tumour cell, with reference to TCIHC≥25%. Eighty-six samples were successfully tested; 3 failed due to insufficient control probe staining, 1 due to lack of tumour. Percent TCmRNA staining using RNAScope demonstrated statistical significance (at α = 0.05) in the PD-L1 high (TCIHC ≥25%) vs the PD-L1 low (TCIHC <25%) groups for NSCLC, HNSCC, and UC. The number of punctate dots/tumour cell was significantly higher in the PD-L1 high vs the PD-L1 low groups for NSCLC and HNSCC but not UC. For %TCmRNA; ROC analysis identified thresholds of: NSCLC 18.0%, HNSCC 31.8%, UC 25.8%. For dots/tumour cell, thresholds were: NSCLC 0.26, HNSCC 0.53, UC 0.45. Routine tissue fixation and processing is suitable for RNA detection using RNAScope. PD-L1 mRNA extent and level is associated with PD-L1 status determined by IHC. Threshold optimisation for %TCmRNA and mean dots/tumour cell results in high specificity to IHC PD-L1 classification, but only moderate sensitivity.

Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons

Nature communications

2022 Sep 26

Matson, KJE;Russ, DE;Kathe, C;Hua, I;Maric, D;Ding, Y;Krynitsky, J;Pursley, R;Sathyamurthy, A;Squair, JW;Levi, BP;Courtine, G;Levine, AJ;
PMID: 36163250 | DOI: 10.1038/s41467-022-33184-1

After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or augment recovery. Targeting these cells requires a clearer understanding of their injury responses and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. Using this resource, we find rare spinal neurons that express a signature of regeneration in response to injury, including a major population that represent spinocerebellar projection neurons. We characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the spinal cord and cerebellum. Together, this work provides a key resource for studying cellular responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering a potential candidate for targeted therapy.
Neurogliaform cortical interneurons derive from cells in the preoptic area.

Elife.

2018 Mar 20

Niquille M, Limoni G, Markopoulos F, Cadilhac C, Prados J, Holtmaat A, Dayer A.
PMID: 29557780 | DOI: 10.7554/eLife.32017

Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?