Nan, P;Dong, X;Bai, X;Lu, H;Liu, F;Sun, Y;Zhao, X;
PMID: 34958892 | DOI: 10.1016/j.canlet.2021.12.025
The pancreatic ductal adenocarcinoma (PDAC) microenvironment contains dense desmoplastic stroma dominated by cancer-associated fibroblasts (CAFs) and is crucial to cancer development and progression. Several studies have revealed that thrombospondin 2 (THBS2) is a valuable serological-marker in PDAC. However, the detailed mechanism of the cancer-stroma interactome remains unclear. Here we showed that elevated THBS2 expression in PDAC was predominantly restricted to stroma and correlated with tumor progression and poor prognosis by quantitative proteomics and immunohistochemistry analyses. RNA in situ hybridization confirmed that CAFs but not neoplastic cells expressed THBS2 in precancerous lesions and its levels gradually increased with disease progression in genetically engineered mouse models. Mechanistically, cancer cell-secreted TGF-β1 activated CAFs to induce THBS2 expression via the p-Smad2/3 pathway. Consequently, CAF-derived THBS2 bound to the membrane receptors integrin αvβ3/CD36 and activated the MAPK pathway in PDAC cells to promote tumor growth and adhesion in vitro and in vivo. Inhibition of integrin αvβ3, CD36, MEK and JNK rescued THBS2-induced malignant phenotypes. In conclusion, the TGF-β1-THBS2-integrin αvβ3/CD36-MAPK cascade forms a complex feedback circuit to mediate reciprocal interactions of pancreatic cancer cells-CAFs. THBS2 may act as a novel therapeutic-target to block the cancer-stroma communication.
Journal of molecular and cellular cardiology
Ding, S;Liu, J;Han, X;Ding, W;Liu, Z;Zhu, Y;Zhan, W;Wan, Y;Gai, S;Hou, J;Wang, X;Wu, Y;Wu, A;Li, CY;Zheng, Z;Tian, XL;Cao, H;
PMID: 35714558 | DOI: 10.1016/j.yjmcc.2022.06.001
Long noncoding RNAs (lncRNAs) are critical regulators of inflammation with great potential as new therapeutic targets. However, the role of lncRNAs in early atherosclerosis remains poorly characterized. This study aimed to identify the key lncRNA players in activated endothelial cells (ECs). The lncRNAs in response to pro-inflammatory factors in ECs were screened through RNA sequencing. ICAM-1-related non-coding RNA (ICR) was identified as the most potential candidate for early atherosclerosis. ICR is essential for intercellular adhesion molecule-1 (ICAM1) expression, EC adhesion and migration. In a high fat diet-induced atherosclerosis model in mice, ICR is upregulated in the development of atherosclerosis. After intravenous injection of adenovirus carrying shRNA for mouse ICR, the atherosclerotic plaque area was markedly reduced with the declined expression of ICR and ICAM1. Mechanistically, ICR stabilized the mRNA of ICAM1 in quiescent ECs; while under inflammatory stress, ICR upregulated ICAM1 in a nuclear factor kappa B (NF-κB) dependent manner. RNA-seq analysis showed pro-inflammatory targets of NF-κB were regulated by ICR. Furthermore, the chromatin immunoprecipitation assays showed that p65 binds to ICR promoter and facilitates its transcription. Interestingly, ICR, in turn, promotes p65 accumulation and activity, forming a positive feedback loop to amplify NF-κB signaling. Preventing the degradation of p65 using proteasome inhibitors rescued the expression of NF-κB targets suppressed by ICR. Taken together, ICR acts as an accelerator to amplify NF-κB signaling in activated ECs and suppressing ICR is a promising early intervention for atherosclerosis through ICR/p65 loop blockade.
Manresa, MC;Wu, A;Nhu, QM;Chiang, AWT;Okamoto, K;Miki, H;Kurten, R;Pham, E;Duong, LD;Lewis, NE;Akuthota, P;Croft, M;Aceves, SS;
PMID: 34903876 | DOI: 10.1038/s41385-021-00472-w
Fibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTβR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTβR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT's transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTβR-NIK-p52 NF-κB dominant pathway.
Li, X;Li, Y;Xiao, J;Wang, H;Guo, Y;Mao, X;Shi, P;Hou, Y;Zhang, X;Zhao, N;Zheng, M;He, Y;Ding, J;Tan, Y;Liao, M;Li, L;Peng, Y;Li, X;Pan, Q;Xie, Q;Li, Q;Li, J;Li, Y;Chen, Z;Huang, Y;Assis, DN;Cai, SY;Boyer, JL;Huang, X;Tang, CE;Liu, X;Peng, S;Chai, J;
PMID: 36759512 | DOI: 10.1038/s41467-022-34606-w
Cholangiocytes play a crucial role in bile formation. Cholangiocyte injury causes cholestasis, including primary biliary cholangitis (PBC). However, the etiology of PBC remains unclear despite being characterized as an autoimmune disease. Using single-cell RNA sequencing (scRNA-seq), fluorescence-activated-cell-sorting, multiplex immunofluorescence (IF) and RNAscope analyses, we identified unique DUOX2+ACE2+ small cholangiocytes in human and mouse livers. Their selective decrease in PBC patients was associated with the severity of disease. Moreover, proteomics, scRNA-seq, and qPCR analyses indicated that polymeric immunoglobulin receptor (pIgR) was highly expressed in DUOX2+ACE2+ cholangiocytes. Serum anti-pIgR autoantibody levels were significantly increased in PBC patients, regardless of positive and negative AMA-M2. Spatial transcriptomics and multiplex IF revealed that CD27+ memory B and plasma cells accumulated in the hepatic portal tracts of PBC patients. Collectively, DUOX2+ACE2+ small cholangiocytes are pathogenic targets in PBC, and preservation of DUOX2+ACE2+ cholangiocytes and targeting anti-pIgR autoantibodies may be valuable strategies for therapeutic interventions in PBC.
Advances in Laboratory Medicine / Avances en Medicina de Laboratorio
Cereceda, K;Jorquera, R;Villarroel-Espíndola, F;
| DOI: 10.1515/almed-2021-0075
The development and subsequent adaptation of mass cytometry for the histological analysis of tissue sections has allowed the simultaneous spatial characterization of multiple components. This is useful to find the correlation between the genotypic and phenotypic profile of tumor cells and their environment in clinical-translational studies. In this revision, we provide an overview of the most relevant hallmarks in the development, implementation and application of multiplexed imaging in the study of cancer and other conditions. A special focus is placed on studies based on imaging mass cytometry (IMC) and multiplexed ion beam imaging (MIBI). The purpose of this review is to help our readers become familiar with the verification techniques employed on this tool and outline the multiple applications reported in the literature. This review will also provide guidance on the use of IMC or MIBI in any field of biomedical research.
Schulz D, Zanotelli VRT, Fischer JR, Schapiro D, Engler S, Lun XK, Jackson HW, Bodenmiller B.
PMID: 29289569 | DOI: 10.1016/j.cels.2017.12.001
To build comprehensive models of cellular states and interactions in normal and diseased tissue, genetic and proteomic information must be extracted with single-cell and spatial resolution. Here, we extended imaging mass cytometry to enable multiplexed detection of mRNA and proteins in tissues. Three mRNA target species were detected by RNAscope-based metal in situ hybridization with simultaneous antibody detection of 16 proteins. Analysis of 70 breast cancer samples showed that HER2 and CK19 mRNA and protein levels are moderately correlated on the single-cell level, but that only HER2, and not CK19, has strong mRNA-to-protein correlation on the cell population level. The chemoattractant CXCL10 was expressed in stromal cell clusters, and the frequency of CXCL10-expressing cells correlated with T cell presence. Our flexible and expandable method will allow an increase in the information content retrieved from patient samples for biomedical purposes, enable detailed studies of tumor biology, and serve as a tool to bridge comprehensive genomic and proteomic tissue analysis.
British journal of cancer, 106(11), 1790–1797.
Payne RE, Wang F, Su N, Krell J, Zebrowski A, Yagüe E, Ma XJ, Luo Y, Coombes RC (2012).
PMID: 22538972 | DOI: 10.1038/bjc.2012.137.
BACKGROUND:
Current approaches for detecting circulating tumour cells (CTCs) in blood are dependent on CTC enrichment and are based either on surface epithelial markers on CTCs or on cell size differences. The objectives of this study were to develop and characterise an ultrasensitive multiplex fluorescent RNA in situ hybridisation (ISH)-based CTC detection system called CTCscope. This method detects a multitude of tumour-specific markers at single-cell level in blood.
METHODS:
Healthy blood samples spiked with tumour cell lines were used as a model system for the development and initial characterisation of CTCscope. To demonstrate the feasibility of CTC detection in patient blood, duplicate blood samples were drawn from 45 metastatic breast cancer patients for analysis by CTCscope and the CellSearch system. The association of CTCs with the tumour marker CA15-3 and progression-free survival (PFS) were assessed.
RESULTS:
CTCscope detected CTC transcripts of eight epithelial markers and three epithelial-mesenchymal-transition (EMT) markers for increased sensitivity. CTCscope was used to detect CTCs with minimal enrichment, and did not detect apoptotic or dead cells. In patient blood samples, CTCs detected by CellSearch, but not CTCscope, were positively correlated with CA15-3 levels. Circulating tumour cells detected by either CTCscope or CellSearch predicted PFS (CTCscope, HR (hazard ratio) 2.26, 95% CI 1.18-4.35, P=0.014; CellSearch, HR 2.50, 95% CI 1.27-4.90, P=0.008).
CONCLUSION:
CTCscope offers unique advantages over existing CTC detection approaches. By enumerating and characterising only viable CTCs, CTCscope provides additional prognostic and predictive information in therapy monitoring.
Mol Cancer. 2015 Apr 8;14(1):77.
Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, Miyagi E, Hirahara F, Takano Y, Miyagi Y.
PMID: 25879517 | DOI: 10.1186/s12943-015-0351-z.
BACKGROUND: Elucidation of the molecular mechanisms by which cancer cells overcome hypoxia is potentially important for targeted therapy. Complexation of hypoxia-inducible factors (HIFs) with aryl hydrocarbon receptor nuclear translocators can enhance gene expression and initiate cellular responses to hypoxia. However, multiple molecular mechanisms may be required for cancer cells to adapt to diverse microenvironments. We previously demonstrated that a physical interaction between the ubiquitously expressed transcription factor Sp1 and HIF2 is a major cause of FVII gene activation in poor prognostic ovarian clear cell carcinoma (CCC) cells under hypoxia. Furthermore, it was found that FVII activation is synergistically enhanced when serum-starved cells are cultured under hypoxic conditions. In this study, we investigated whether HIFs and transcription factor Sp1 cooperate to activate multiple genes in CCC cells under conditions of serum starvation and hypoxia (SSH) and then contribute to malignant phenotypes. METHODS: To identify genes activated under hypoxic conditions in an Sp1-dependent manner, we first performed cDNA microarray analyses. We further investigated the molecular mechanisms of synergistic gene activations including the associated serum factors by various experiments such as real-time RT-PCR, western blotting and chromatin immunoprecipitation. The study was further extended to animal experiments to investigate how it contributes to CCC progression in vivo. RESULTS: ICAM1 is one such gene dramatically induced by SSH and is highly induced by SSH and its synergistic activation involves both the mTOR and autonomously activated TNFα-NFκB axes. We identified long chain fatty acids (LCFA) as a major class of lipids that is associated with albumin, a serum factor responsible for synergistic gene activation under SSH. Furthermore, we found that ICAM1 can be induced in vivo to promote tumor growth. CONCLUSION: Sp1 and HIFs collaborate to activate genes required for the adaptation of CCC cells to severe microenvironments, such as LCFA starvation and hypoxia. This study highlights the importance of transcriptional regulation under lipid starvation and hypoxia in the promotion of CCC tumor growth.
Mukhopadhyay, B;Holovac, K;Schuebel, K;Mukhopadhyay, P;Cinar, R;Iyer, S;Marietta, C;Goldman, D;Kunos, G;
PMID: 36966147 | DOI: 10.1038/s41420-023-01400-6
The proliferation and differentiation of hepatic progenitor cells (HPCs) drive the homeostatic renewal of the liver under diverse conditions. Liver regeneration is associated with an increase in Axin2+Cnr1+ HPCs, along with a marked increase in the levels of the endocannabinoid anandamide (AEA). But the molecular mechanism linking AEA signaling to HPC proliferation and/or differentiation has not been explored. Here, we show that in vitro exposure of HPCs to AEA triggers both cell cycling and differentiation along with increased expression of Cnr1, Krt19, and Axin2. Mechanistically, we found that AEA promotes the nuclear localization of the transcription factor β-catenin, with subsequent induction of its downstream targets. Systemic analyses of cells after CRISPR-mediated knockout of the β-catenin-regulated transcriptome revealed that AEA modulates β-catenin-dependent cell cycling and differentiation, as well as interleukin pathways. Further, we found that AEA promotes OXPHOS in HPCs when amino acids and glucose are readily available as substrates, but AEA inhibits it when the cells rely primarily on fatty acid oxidation. Thus, the endocannabinoid system promotes hepatocyte renewal and maturation by stimulating the proliferation of Axin2+Cnr1+ HPCs via the β-catenin pathways while modulating the metabolic activity of their precursor cells.
Hepatology communications
Wang, D;Li, M;Ling, J;Chen, S;Zhang, Q;Liu, Z;Huang, Y;Pan, C;Lin, Y;Shi, Z;Zhang, P;Zheng, Y;
PMID: 36724124 | DOI: 10.1097/HC9.0000000000000021
Endothelial cell (EC) function declines with age and contributes to the development of many vascular-related disease processes. Currently, the effects of aging on the molecular regulatory mechanisms of liver ECs have not been fully elucidated. Here, we employed single-cell RNA sequencing to map the transcriptome of ECs and analyzed their relationship with aging. We identified 8 different EC subtypes, interestingly, 2 of which were specially expressed in aged mice ECs namely aged capillary ECs (Aged ECs) and pro-inflammation capillary ECs (Proinfla.ECs). Double immunostaining for an EC marker (Cd31) and a marker of these specialized EC phenotypes confirmed the single-cell RNA sequencing data. Gene ontology analysis revealed that Aged ECs and Proinfla.ECs were associated with inflammatory response. Then we found that liver proliferating capillary ECs (Prolife.ECs) were most affected by senescence. Single-cell transcript analysis suggests that Prolife.ECs and angiogenic capillary ECs may form a poor microenvironment that promotes angiogenesis and tumorigenesis. Pseudo-temporal trajectories revealed that Prolife.ECs have different differentiation pathways in young and aged mice. In aged mice, Prolife.ECs could specifically differentiate into an unstable state, which was mainly composed of angiogenic capillary ECs. Intercellular communication revealed inflammatory activation in old group. Overall, this work compared the single-cell RNA profiles of liver ECs in young and aged mice. These findings provide a new insight into liver aging and its molecular mechanisms, and further exploration of Aged ECs and Proinfla.ECs may help to elucidate the molecular mechanisms associated with senescence.