Journal of molecular and cellular cardiology
Ding, S;Liu, J;Han, X;Ding, W;Liu, Z;Zhu, Y;Zhan, W;Wan, Y;Gai, S;Hou, J;Wang, X;Wu, Y;Wu, A;Li, CY;Zheng, Z;Tian, XL;Cao, H;
PMID: 35714558 | DOI: 10.1016/j.yjmcc.2022.06.001
Long noncoding RNAs (lncRNAs) are critical regulators of inflammation with great potential as new therapeutic targets. However, the role of lncRNAs in early atherosclerosis remains poorly characterized. This study aimed to identify the key lncRNA players in activated endothelial cells (ECs). The lncRNAs in response to pro-inflammatory factors in ECs were screened through RNA sequencing. ICAM-1-related non-coding RNA (ICR) was identified as the most potential candidate for early atherosclerosis. ICR is essential for intercellular adhesion molecule-1 (ICAM1) expression, EC adhesion and migration. In a high fat diet-induced atherosclerosis model in mice, ICR is upregulated in the development of atherosclerosis. After intravenous injection of adenovirus carrying shRNA for mouse ICR, the atherosclerotic plaque area was markedly reduced with the declined expression of ICR and ICAM1. Mechanistically, ICR stabilized the mRNA of ICAM1 in quiescent ECs; while under inflammatory stress, ICR upregulated ICAM1 in a nuclear factor kappa B (NF-κB) dependent manner. RNA-seq analysis showed pro-inflammatory targets of NF-κB were regulated by ICR. Furthermore, the chromatin immunoprecipitation assays showed that p65 binds to ICR promoter and facilitates its transcription. Interestingly, ICR, in turn, promotes p65 accumulation and activity, forming a positive feedback loop to amplify NF-κB signaling. Preventing the degradation of p65 using proteasome inhibitors rescued the expression of NF-κB targets suppressed by ICR. Taken together, ICR acts as an accelerator to amplify NF-κB signaling in activated ECs and suppressing ICR is a promising early intervention for atherosclerosis through ICR/p65 loop blockade.
Manresa, MC;Wu, A;Nhu, QM;Chiang, AWT;Okamoto, K;Miki, H;Kurten, R;Pham, E;Duong, LD;Lewis, NE;Akuthota, P;Croft, M;Aceves, SS;
PMID: 34903876 | DOI: 10.1038/s41385-021-00472-w
Fibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTβR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTβR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT's transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTβR-NIK-p52 NF-κB dominant pathway.
Mol Cancer. 2015 Apr 8;14(1):77.
Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, Miyagi E, Hirahara F, Takano Y, Miyagi Y.
PMID: 25879517 | DOI: 10.1186/s12943-015-0351-z.
BACKGROUND: Elucidation of the molecular mechanisms by which cancer cells overcome hypoxia is potentially important for targeted therapy. Complexation of hypoxia-inducible factors (HIFs) with aryl hydrocarbon receptor nuclear translocators can enhance gene expression and initiate cellular responses to hypoxia. However, multiple molecular mechanisms may be required for cancer cells to adapt to diverse microenvironments. We previously demonstrated that a physical interaction between the ubiquitously expressed transcription factor Sp1 and HIF2 is a major cause of FVII gene activation in poor prognostic ovarian clear cell carcinoma (CCC) cells under hypoxia. Furthermore, it was found that FVII activation is synergistically enhanced when serum-starved cells are cultured under hypoxic conditions. In this study, we investigated whether HIFs and transcription factor Sp1 cooperate to activate multiple genes in CCC cells under conditions of serum starvation and hypoxia (SSH) and then contribute to malignant phenotypes. METHODS: To identify genes activated under hypoxic conditions in an Sp1-dependent manner, we first performed cDNA microarray analyses. We further investigated the molecular mechanisms of synergistic gene activations including the associated serum factors by various experiments such as real-time RT-PCR, western blotting and chromatin immunoprecipitation. The study was further extended to animal experiments to investigate how it contributes to CCC progression in vivo. RESULTS: ICAM1 is one such gene dramatically induced by SSH and is highly induced by SSH and its synergistic activation involves both the mTOR and autonomously activated TNFα-NFκB axes. We identified long chain fatty acids (LCFA) as a major class of lipids that is associated with albumin, a serum factor responsible for synergistic gene activation under SSH. Furthermore, we found that ICAM1 can be induced in vivo to promote tumor growth. CONCLUSION: Sp1 and HIFs collaborate to activate genes required for the adaptation of CCC cells to severe microenvironments, such as LCFA starvation and hypoxia. This study highlights the importance of transcriptional regulation under lipid starvation and hypoxia in the promotion of CCC tumor growth.
Hepatology communications
Wang, D;Li, M;Ling, J;Chen, S;Zhang, Q;Liu, Z;Huang, Y;Pan, C;Lin, Y;Shi, Z;Zhang, P;Zheng, Y;
PMID: 36724124 | DOI: 10.1097/HC9.0000000000000021
Endothelial cell (EC) function declines with age and contributes to the development of many vascular-related disease processes. Currently, the effects of aging on the molecular regulatory mechanisms of liver ECs have not been fully elucidated. Here, we employed single-cell RNA sequencing to map the transcriptome of ECs and analyzed their relationship with aging. We identified 8 different EC subtypes, interestingly, 2 of which were specially expressed in aged mice ECs namely aged capillary ECs (Aged ECs) and pro-inflammation capillary ECs (Proinfla.ECs). Double immunostaining for an EC marker (Cd31) and a marker of these specialized EC phenotypes confirmed the single-cell RNA sequencing data. Gene ontology analysis revealed that Aged ECs and Proinfla.ECs were associated with inflammatory response. Then we found that liver proliferating capillary ECs (Prolife.ECs) were most affected by senescence. Single-cell transcript analysis suggests that Prolife.ECs and angiogenic capillary ECs may form a poor microenvironment that promotes angiogenesis and tumorigenesis. Pseudo-temporal trajectories revealed that Prolife.ECs have different differentiation pathways in young and aged mice. In aged mice, Prolife.ECs could specifically differentiate into an unstable state, which was mainly composed of angiogenic capillary ECs. Intercellular communication revealed inflammatory activation in old group. Overall, this work compared the single-cell RNA profiles of liver ECs in young and aged mice. These findings provide a new insight into liver aging and its molecular mechanisms, and further exploration of Aged ECs and Proinfla.ECs may help to elucidate the molecular mechanisms associated with senescence.