Ebenig, A;Muraleedharan, S;Kazmierski, J;Todt, D;Auste, A;Anzaghe, M;Gömer, A;Postmus, D;Gogesch, P;Niles, M;Plesker, R;Miskey, C;Gellhorn Serra, M;Breithaupt, A;Hörner, C;Kruip, C;Ehmann, R;Ivics, Z;Waibler, Z;Pfaender, S;Wyler, E;Landthaler, M;Kupke, A;Nouailles, G;Goffinet, C;Brown, RJP;Mühlebach, MD;
PMID: 35952673 | DOI: 10.1016/j.celrep.2022.111214
Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.
Science translational medicine
Dinnon, KH;Leist, SR;Okuda, K;Dang, H;Fritch, EJ;Gully, KL;De la Cruz, G;Evangelista, MD;Asakura, T;Gilmore, RC;Hawkins, P;Nakano, S;West, A;Schäfer, A;Gralinski, LE;Everman, JL;Sajuthi, SP;Zweigart, MR;Dong, S;McBride, J;Cooley, MR;Hines, JB;Love, MK;Groshong, SD;VanSchoiack, A;Phelan, SJ;Liang, Y;Hether, T;Leon, M;Zumwalt, RE;Barton, LM;Duval, EJ;Mukhopadhyay, S;Stroberg, E;Borczuk, A;Thorne, LB;Sakthivel, MK;Lee, YZ;Hagood, JS;Mock, JR;Seibold, MA;O'Neal, WK;Montgomery, SA;Boucher, RC;Baric, RS;
PMID: 35857635 | DOI: 10.1126/scitranslmed.abo5070
A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days post-virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
Wang, Z;Li, Z;Shi, W;Zhu, D;Hu, S;Dinh, PC;Cheng, K;
PMID: 37352360 | DOI: 10.1126/sciadv.abo4100
The circulating flu viruses merging with the ongoing COVID-19 pandemic raises a more severe threat that promotes the infectivity of SARS-CoV-2 associated with higher mortality rates. Here, we conjugated recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein onto inactivated influenza A virus (Flu) to develop a SARS-CoV-2 virus-like particle (VLP) vaccine with two-hit protection. This double-hit vaccine (Flu-RBD) not only induced protective immunities against SARS-CoV-2 but also remained functional as a flu vaccine. The Flu core improved the retention and distribution of Flu-RBD vaccine in the draining lymph nodes, with enhanced immunogenicity. In a hamster model of live SARS-CoV-2 infection, two doses of Flu-RBD efficiently protected animals against viral infection. Furthermore, Flu-RBD VLP elicited a strong neutralization activity against both SARS-CoV-2 Delta pseudovirus and wild-type influenza A H1N1 inactivated virus in mice. Overall, the Flu-RBD VLP vaccine is a promising candidate for combating COVID-19, influenza A, and coinfection.
Wanner, N;Andrieux, G;Badia-I-Mompel, P;Edler, C;Pfefferle, S;Lindenmeyer, MT;Schmidt-Lauber, C;Czogalla, J;Wong, MN;Okabayashi, Y;Braun, F;Lütgehetmann, M;Meister, E;Lu, S;Noriega, MLM;Günther, T;Grundhoff, A;Fischer, N;Bräuninger, H;Lindner, D;Westermann, D;Haas, F;Roedl, K;Kluge, S;Addo, MM;Huber, S;Lohse, AW;Reiser, J;Ondruschka, B;Sperhake, JP;Saez-Rodriguez, J;Boerries, M;Hayek, SS;Aepfelbacher, M;Scaturro, P;Puelles, VG;Huber, TB;
PMID: 35347318 | DOI: 10.1038/s42255-022-00552-6
Extrapulmonary manifestations of COVID-19 have gained attention due to their links to clinical outcomes and their potential long-term sequelae1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) displays tropism towards several organs, including the heart and kidney. Whether it also directly affects the liver has been debated2,3. Here we provide clinical, histopathological, molecular and bioinformatic evidence for the hepatic tropism of SARS-CoV-2. We find that liver injury, indicated by a high frequency of abnormal liver function tests, is a common clinical feature of COVID-19 in two independent cohorts of patients with COVID-19 requiring hospitalization. Using autopsy samples obtained from a third patient cohort, we provide multiple levels of evidence for SARS-CoV-2 liver tropism, including viral RNA detection in 69% of autopsy liver specimens, and successful isolation of infectious SARS-CoV-2 from liver tissue postmortem. Furthermore, we identify transcription-, proteomic- and transcription factor-based activity profiles in hepatic autopsy samples, revealing similarities to the signatures associated with multiple other viral infections of the human liver. Together, we provide a comprehensive multimodal analysis of SARS-CoV-2 liver tropism, which increases our understanding of the molecular consequences of severe COVID-19 and could be useful for the identification of organ-specific pharmacological targets.
Bader, SM;Cooney, JP;Pellegrini, M;Doerflinger, M;
PMID: 35244141 | DOI: 10.1042/BCJ20210602
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
bioRxiv : the preprint server for biology
Dinnon, KH;Leist, SR;Okuda, K;Dang, H;Fritch, EJ;Gully, KL;De la Cruz, G;Evangelista, MD;Asakura, T;Gilmore, RC;Hawkins, P;Nakano, S;West, A;Schäfer, A;Gralinski, LE;Everman, JL;Sajuthi, SP;Zweigart, MR;Dong, S;McBride, J;Cooley, MR;Hines, JB;Love, MK;Groshong, SD;VanSchoiack, A;Phelan, SJ;Liang, Y;Hether, T;Leon, M;Zumwalt, RE;Barton, LM;Duval, EJ;Mukhopadhyay, S;Stroberg, E;Borczuk, A;Thorne, LB;Sakthivel, MK;Lee, YZ;Hagood, JS;Mock, JR;Seibold, MA;O'Neal, WK;Montgomery, SA;Boucher, RC;Baric, RS;
PMID: 35194605 | DOI: 10.1101/2022.02.15.480515
COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
Kidney allograft biopsy findings after COVID-19
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
Daniel, E;Sekulic, M;Kudose, S;Kubin, C;Ye, X;Shayan, K;Patel, A;Cohen, DJ;Ratner, L;Santoriello, D;Stokes, MB;Markowitz, GS;Pereira, MR;D'Agati, VD;Batal, I;
PMID: 34403563 | DOI: 10.1111/ajt.16804
COVID-19 has been associated with acute kidney injury and published reports of native kidney biopsies have reported diverse pathologies. Case series directed specifically to kidney allograft biopsy findings in the setting of COVID-19 are lacking. We evaluated 18 kidney transplant recipients who were infected with SARS-CoV-2 and underwent allograft biopsy. Patients had a median age of 55 years, six were female, and five were Black. Fifteen patients developed COVID-19 pneumonia, of which five required mechanical ventilation. Notably, five of eleven (45%) biopsies obtained within one month of positive SARS-CoV-2 PCR showed acute rejection (four with arteritis, three of which were not associated with reduced immunosuppression). The remaining six biopsies revealed podocytopathy (n=2, collapsing glomerulopathy and lupus podocytopathy), acute tubular injury (n=2), infarction (n=1), and transplant glomerulopathy (n=1). Biopsies performed >1 month after positive SARS-CoV-2 PCR revealed collapsing glomerulopathy (n=1), acute tubular injury (n=1), and non-specific histologic findings (n=5). No direct viral infection of the kidney allograft was detected by immunohistochemistry, in situ hybridization, or electron microscopy. On follow-up, two patients died and most patients showed persistent allograft dysfunction. In conclusion, we demonstrate diverse causes of kidney allograft dysfunction after COVID-19, the most common being acute rejection with arteritis.This article is protected by
Biopreservation and biobanking
Higgs, EF;Flood, BA;Pyzer, AR;Rouhani, SJ;Trujillo, JA;Gajewski, TF;
PMID: 35771982 | DOI: 10.1089/bio.2021.0169
Biobanking during the COVID-19 pandemic presented unique challenges regarding patient enrollment, sample collection, and experimental analysis. This report details the ways in which we rapidly overcame those challenges to create a robust database of clinical information and patient samples while maintaining clinician and researcher safety. We developed a pipeline using REDCap (Research Electronic Data Capture) to coordinate electronic informed consent, sample collection, immunological assay execution, and data analysis for biobanking samples from patients with COVID-19. We then integrated immunological assay data with clinical data extracted from the electronic health record to link study parameters with clinical readouts. Of the 193 inpatients who participated in this study, 138 consented electronically and 56 provided paper consent. We collected and banked blood samples to measure circulating cytokines and chemokines, peripheral immune cell composition and activation status, anti-COVID-19 antibodies, and germline gene polymorphisms. In addition, we collected DNA and RNA from nasopharyngeal swabs to assess viral titer and microbiome composition by 16S sequencing. The rapid spread and contagious nature of COVID-19 required special considerations and innovative solutions to biobank samples quickly while protecting researchers and clinicians. Overall, this workflow and computational pipeline allowed for comprehensive immune profiling of 193 inpatients infected with COVID-19, as well as 89 outpatients, 157 patients receiving curbside COVID-19 testing, and 86 healthy controls. We describe a novel electronic framework for biobanking and analyzing patient samples during COVID-19, and present insights and strategies that can be applied more broadly to other biobank studies.
Ward, JD;Cornaby, C;Kato, T;Gilmore, RC;Bunch, D;Miller, MB;Boucher, RC;Schmitz, JL;Askin, FA;Scanga, LR;
PMID: 35512490 | DOI: 10.1016/j.placenta.2022.04.006
The effect of SARS-CoV-2 severity or the trimester of infection in pregnant mothers, placentas, and infants is not fully understood.A retrospective, observational cohort study in Chapel Hill, NC of 115 mothers with SARS-CoV-2 and singleton pregnancies from December 1, 2019 to May 31, 2021 via chart review to document the infants' weight, length, head circumference, survival, congenital abnormalities, hearing loss, maternal complications, and placental pathology classified by the Amsterdam criteria.Of the 115 mothers, 85.2% were asymptomatic (n = 37) or had mild (n = 61) symptoms, 13.0% had moderate (n = 9) or severe (n = 6) COVID-19, and 1.74% (n = 2) did not have symptoms recorded. Moderate and severe maternal infections were associated with increased C-section, premature delivery, infant NICU admission, and were more likely to occur in Type 1 (p = 0.0055) and Type 2 (p = 0.0285) diabetic mothers. Only one infant (0.870%) became infected with SARS-CoV-2, which was not via the placenta. Most placentas (n = 63, 54.8%) did not show specific histologic findings; however, a subset showed mild maternal vascular malperfusion (n = 26, 22.6%) and/or mild microscopic ascending intrauterine infection (n = 28, 24.3%). The infants had no identifiable congenital abnormalities, and all infants and mothers survived.Most mothers and their infants had a routine clinical course; however, moderate and severe COVID-19 maternal infections were associated with pregnancy complications and premature delivery. Mothers with pre-existing, non-gestational diabetes were at greatest risk of developing moderate or severe COVID-19. The placental injury patterns of maternal vascular malperfusion and/or microscopic ascending intrauterine infection were not associated with maternal COVID-19 severity.
Gastroenterology Clinics of North America
Meringer, H;Wang, A;Mehandru, S;
| DOI: 10.1016/j.gtc.2022.12.001
The gastrointestinal tract (GI) is targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The present review examines GI involvement in patients with long COVID and discusses the underlying pathophysiological mechanisms that include viral persistence, mucosal and systemic immune dysregulation, microbial dysbiosis, insulin resistance and metabolic abnormalities. Due to the complex and potentially multifactorial nature of this syndrome, rigorous clinical definitions and pathophysiology-based therapeutic approaches are warranted
Mucker, EM;Brocato, RL;Principe, LM;Kim, RK;Zeng, X;Smith, JM;Kwilas, SA;Kim, S;Horton, H;Caproni, L;Hooper, JW;
PMID: 35891268 | DOI: 10.3390/vaccines10071104
To combat the COVID-19 pandemic, an assortment of vaccines has been developed. Nucleic acid vaccines have the advantage of rapid production, as they only require a viral antigen sequence and can readily be modified to detected viral mutations. Doggybone DNA vaccines targeting the spike protein of SARS-CoV-2 have been generated and compared with a traditionally manufactured, bacterially derived plasmid DNA vaccine that utilizes the same spike sequence. Administered to Syrian hamsters by jet injection at two dose levels, the immunogenicity of both DNA vaccines was compared following two vaccinations. Immunized hamsters were then immunosuppressed and exposed to SARS-CoV-2. Significant differences in body weight were observed during acute infection, and lungs collected at the time of euthanasia had significantly reduced viral RNA, infectious virus, and pathology compared with irrelevant DNA-vaccinated controls. Moreover, immune serum from vaccinated animals was capable of neutralizing SARS-CoV-2 variants of interest and importance in vitro. These data demonstrate the efficacy of a synthetic DNA vaccine approach to protect hamsters from SARS-CoV-2.
Chen, DY;Turcinovic, J;Feng, S;Kenney, DJ;Chin, CV;Choudhary, MC;Conway, HL;Semaan, M;Close, BJ;Tavares, AH;Seitz, S;Khan, N;Kapell, S;Crossland, NA;Li, JZ;Douam, F;Baker, SC;Connor, JH;Saeed, M;
PMID: 37095858 | DOI: 10.1016/j.isci.2023.106634
A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.