Mora-D�az J, Pi�eyro P, Shen H, Schwartz K, Vannucci F2, Li G, Arruda B, Gim�nez-Lirola L
PMID: 32079070 | DOI: 10.3390/v12020219
Porcine circovirus 3 (PCV3) has been identified as a putative swine pathogen with a subset of infections resulting in stillborn and mummified fetuses, encephalitis and myocarditis in perinatal, and periarteritis in growing pigs. Three PCV3 isolates were isolated from weak-born piglets or elevated stillborn and mummified fetuses. Full-length genome sequences from different passages and isolates (PCV3a1 ISU27734, PCV3a2 ISU58312, PCV3c ISU44806) were determined using metagenomics sequencing. Virus production in cell culture was confirmed by qPCR, IFA, and in situ hybridization. In vivo replication of PCV3 was also demonstrated in CD/CD pigs (n = 8) under experimental conditions. Viremia, first detected at 7 dpi, was detected in all pigs by 28 dpi. IgM antibody response was detected between 7-14 dpi in 5/8 PCV3-inoculated pigs but no IgG seroconversion was detected throughout the study. Pigs presented histological lesion consistent with multi systemic inflammation characterized by myocarditis and systemic perivasculitis. Viral replication was confirmed in all tissues by in situ hybridization. Clinically, all animals were unremarkable throughout the study. Although the clinical relevance of PCV3 remains under debate, this is the first isolation of PCV3 from perinatal and reproductive cases of PCV3-associated disease and in vivo characterization of PCV3 infection in a CD/CD pig model
Phan TG, Giannitti F, Rossow S, Marthaler D, Knutson T, Li L, Deng X, Resende T, Vannucci F, Delwart E.
PMID: 27835942 | DOI: 10.1186/s12985-016-0642-z
Abstract
BACKGROUND:
Porcine circovirus 2 causes different clinical syndromes resulting in a significant economic loss in the pork industry. Three pigs with unexplained cardiac and multi-organ inflammation that tested negative for PCV2 and other known porcine pathogens were further analyzed.
METHODS:
Histology was used to identify microscopic lesions in multiple tissues. Metagenomics was used to detect viral sequences in tissue homogenates. In situ hybridization was used to detect viral RNA expression in cardiac tissue.
RESULTS:
In all three cases we characterized the genome of a new circovirus we called PCV3 with a replicase and capsid proteins showing 55 and 35 % identities to the genetically-closest proteins from a bat-feces associated circovirus and were even more distant to those of porcine circovirus 1 and 2. Common microscopic lesions included non-suppurative myocarditis and/or cardiac arteriolitis. Viral mRNA was detected intralesionally in cardiac cells. Deep sequencing in tissues also revealed the presence of porcine astrovirus 4 in all three animals as well as rotavirus A, porcine cytomegalovirus and porcine hemagglutinating encephalomyelitis virus in individual cases.
CONCLUSION:
The pathogenicity and molecular epidemiology of this new circovirus, alone or in the context of co-infections, warrants further investigations.
Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3)
Vargas-Bermúdez, DS;Vargas-Pinto, MA;Mogollón, JD;Jaime, J;
PMID: 33832500 | DOI: 10.1186/s12917-021-02862-5
PCV3 is a member of the Circovirus family, associated with disease and mortality in pigs. It is not clear whether PCV3 putatively causes clinical symptoms and disease. In the present case, we reported a gilt infected with PCV3 associated with reproductive failures, vertical transmission, tissue lesions, viral replication by in situ hybridization, and the hypothesis that some strains of PCV3 clade one are associated with reproductive failures at the field level. In May 2019, a pig farm in Colombia reported increased reproductive failures, and the presence of PCV3 in gilts and sows was established in a single form or coinfections, mainly with PCV2 and PPV7. Ten sows with a single infection with PCV3 were found, and one gilt with a pre-farrowing serum viral load above 103 was studied. This gilt was followed up during the pre-farrowing, farrowing period and on her litter for 6 weeks. During dystocic farrowing, a mummy and ten piglets were released, including two weak-born piglets. The highest viral loads for PCV3 were found in the mummy and the placenta. In the weak-born piglets, there were viral loads both in serum and in tissues, mainly in the mesenteric ganglia and lung. Replication of PCV3 in these tissues was demonstrated by in situ hybridizations. PCV3 was also found in the precolostrum sera of piglets and colostrum, showing vertical transmission. The viral load in piglets decreased gradually until week six of life. The viral genome's complete sequencing was made from the mummy, and its analysis classified it as PCV3 clade one. This report confirms that PCV3 can cause disease at the field level, and putatively, in this case, we find the generation of reproductive failures. The ability of PCV3 to cause disease as a putative pathogen may be associated with the viral load present in the pig and the strain that is affecting the farm. For this case, we found that viral loads above 103 (4.93 log genomic copies / mL) in the gilt were associated with clinical manifestation and that some PCV3 strains belonging to clade one are more associated with the reproductive presentation.
Arruda B, Piñeyro P, Derscheid R, Hause B, Byers E, Dion K, Long D, Sievers C, Tangen J, Williams T, Schwartz K.
PMID: 31096848 | DOI: 10.1080/22221751.2019.1613176
Porcine circovirus-associated disease encompasses multiple disease syndromes including porcine circovirus 2 systemic diseases, reproductive failure, and porcine dermatitis and nephropathy syndrome. Until recently, porcine circovirus 2 was the only species associated with the porcine circovirus-associated disease. In this report, diagnostic investigations of thirty-six field cases submitted from multiple production systems, numerous sites and varied geographic locations demonstrated porcine circovirus 3 within lesions by in situ hybridization including fetuses with myocarditis, weak-born neonatal piglets with encephalitis and myocarditis, from cases of porcine dermatitis and nephropathy syndrome, and in weaned pigs with systemic periarteritis. Porcine circovirus 3 was detected by PCR in numerous fetuses and perinatal piglets at high viral loads (trillions of genome copies per mL of tissue homogenate). Samples from all cases in this study were assayed and found negative for porcine circovirus 2 by PCR. Metagenomic sequencing was performed on a subset of reproductive cases, consisting of sixteen fetuses/fetal sample pools. PCV3 was identified in all pools and the only virus identified in fourteen pools. Based on these data, porcine circovirus 3 is considered a putative cause of reproductive failure, encephalitis and myocarditis in perinatal piglets, porcine dermatitis and nephropathy syndrome, and periarteritis in swine in the United States.
Keeler AM, Sapp E, Chase K, Sottosanti E, Danielson E, Pfister E, Stoica L, DiFiglia M, Aronin N, Sena-Esteves M.
PMID: 27689620 | DOI: 10.3233/JHD-160215
Abstract
BACKGROUND:
The genetic mutation in Huntington's disease (HD) is a CAG repeat expansion in the coding region of the huntingtin (Htt) gene. RNAi strategies have proven effective in substantially down-regulating Htt mRNA in the striatum through delivery of siRNAs or viral vectors based on whole tissue assays, but the extent of htt mRNA lowering in individual neurons is unknown.
OBJECTIVE:
Here we characterize the effect of an AAV9-GFP-miRHtt vector on Htt mRNA levels in striatal neurons of Q140/Q140 knock-in mice.
METHODS:
HD mice received bilateral striatal injections of AAV9-GFP-miRHtt or AAV9-GFP at 6 or 12 weeks and striata were evaluated at 6 months of age for levels of Htt mRNA and protein and for mRNA signal within striatal neurons using RNAscope multiplex fluorescence in situ hybridization.
RESULTS:
Compared to controls, the striatum of 6-month old mice treated at 6 or 12 weeks of age with AAV9-GFP-miRHtt showed a reduction of 40-50% in Htt mRNA and lowering of 25-40% in protein levels. The number of Htt mRNA foci in medium spiny neurons (MSNs) of untreated Q140/Q140 mice varied widely per cell (0 to 34 per cell), with ∼10% of MSNs devoid of foci. AAV9-GFP-miRHtt treatment shifted the distribution toward lower numbers and the percentage of cells without foci increased to 14-20%. The average number of Htt mRNA foci per MSN was reduced by 43%.
CONCLUSIONS:
The findings here show that intrastriatal infusion of an AAV9-GFP-miRHtt vector lowers mRNA expression of Htt in striatum by ∼50%, through a partial reduction in the number of copies of mutant Htt mRNAs per cell. These findings demonstrate at the neuronal level the variable levels of Htt mRNA expression in MSNs and the neuronal heterogeneity of RNAi dependent Htt mRNA knockdown.
Histological Lesions and Replication Sites of PCV3 in Naturally Infected Pigs
Animals : an open access journal from MDPI
De Conti, ER;Resende, TP;Marshall-Lund, L;Rovira, A;Vannucci, FA;
PMID: 34073660 | DOI: 10.3390/ani11061520
Porcine circovirus type 3 (PCV3) has been recently described as a potential cause of abortions and systemic vasculitis in pigs. Although the virus has been detected by real-time PCR in several porcine tissues from countries worldwide, PCV3-associated diseases have not been satisfactorily clarified. The objective of this study was to investigate the association between the presence of PCV3 mRNA detected by in situ hybridization (ISH) within histological lesions and PCV3 DNA detected by real-time PCR in naturally infected pigs. A total of 25 PCV3 PCR-positive cases were analyzed. Formalin-fixed tissues from these cases were evaluated for histologic lesions and for ISH-RNA positive signals for PCV3. The most frequent tissue type with histopathologic lesions was heart, 76.2%, with lymphoplasmacytic myocarditis and epicarditis as the most frequent lesions observed. Lymphoplasmacytic interstitial pneumonia was also a frequent finding, 47.6%. There were also lesions in kidney, liver, spleen and lymph nodes. PCV3-ISH-RNA positive signals were mostly observed in association with lymphoplasmacytic inflammatory infiltrate in various tissues, including arteries. Based on our results, the minimum set of specimens to be submitted for histopathology and mRNA in situ hybridization to confirm or exclude a diagnosis of PCV3 are heart, lung and lymphoid tissues (i.e., spleen and lymph nodes), especially for differential diagnosis related with PCV2-associated diseases.
Acta neuropathologica communications
Bauer, S;Chen, CY;Jonson, M;Kaczmarczyk, L;Magadi, SS;Jackson, WS;
PMID: 36670467 | DOI: 10.1186/s40478-022-01500-x
Although Huntington's disease (HD) is classically defined by the selective vulnerability of striatal projection neurons, there is increasing evidence that cerebellar degeneration modulates clinical symptoms. However, little is known about cell type-specific responses of cerebellar neurons in HD. To dissect early disease mechanisms in the cerebellum and cerebrum, we analyzed translatomes of neuronal cell types from both regions in a new HD mouse model. For this, HdhQ200 knock-in mice were backcrossed with the calm 129S4 strain, to constrain experimental noise caused by variable hyperactivity of mice in a C57BL/6 background. Behavioral and neuropathological characterization showed that these S4-HdhQ200 mice had very mild behavioral abnormalities starting around 12 months of age that remained mild up to 18 months. By 9 months, we observed abundant Huntingtin-positive neuronal intranuclear inclusions (NIIs) in the striatum and cerebellum. The translatome analysis of GABAergic cells of the cerebrum further confirmed changes typical of HD-induced striatal pathology. Surprisingly, we observed the strongest response with 626 differentially expressed genes in glutamatergic neurons of the cerebellum, a population consisting primarily of granule cells, commonly considered disease resistant. Our findings suggest vesicular fusion and exocytosis, as well as differentiation-related pathways are affected in these neurons. Furthermore, increased expression of cyclin D1 (Ccnd1) in the granular layer and upregulated expression of polycomb group complex protein genes and cell cycle regulators Cbx2, Cbx4 and Cbx8 point to a putative role of aberrant cell cycle regulation in cerebellar granule cells in early disease.
Kroeger, M;Temeeyasen, G;Piñeyro, P;
| DOI: 10.1016/j.virusres.2022.198764
Porcine circovirus type 3 (PCV3) is a non-enveloped, circular, single-stranded DNA virus in the family Circoviridae. This member of the genus Circovirus was initially described as affecting swine in 2016, and new research has provided further insight into its structural characteristics, disease presentations, pathogenesis, and immune response following infection. Therefore, this review aims to summarize advances in PCV3-related research about genomic characteristics epidemiology, pathogenesis, immune response, and the development of diagnostics. PCV3 has been detected globally and retrospectively in pigs of all ages and is associated with a range of clinical presentations, including multisystemic inflammatory syndrome, reproductive failure, porcine dermatitis and nephropathy syndrome, and subclinical infection. Experimental studies have successfully reproduced multisystemic inflammation but have not detected clinical disease. These findings, coupled with a large number of reports of coinfections coinciding with PCV3, may suggest that PCV3 infection alone may not be sufficient to cause evidenceable clinical disease. The pathogenesis of PCV3 has not been fully elucidated yet, and while receptors that facilitate cell-viral entry have not been identified, replication has been confirmed in a wide range of cell types, including trophoblasts, myocardiocytes, skin adipocytes, and neurons. PCV3 seems to evade the host immune response as evidenced by persistent viremia 42 days post-infection in experimental and longitudinal field studies despite a strong humoral response. Minimal differences in host cytokine profiles and peripheral cell-mediated responses have been observed, but certainly many questions still surround the mechanisms by which PCV3 evades the immune response. The epidemiology of PCV3 remains unclear, and the exact routes of transmission have not been described; but, PCV3 can be shed in oral fluids, nasal secretions, feces, colostrum, and semen, demonstrating the importance of lateral and vertical transmission. The detection of PCV3 in numerous domesticated and wild animal species, including cattle, dogs, mice, wild boar, chamois, roe deer, ticks, and mosquitoes, suggests the potential for multiple reservoirs and cross-species transmission. Current advances in PCV3 diagnostic tests have the ability to differentiate PCV3 from other PCVs and corroborate its presence within lesions. Given that the economic impact associated with PCV3 infection has not been assessed and the virus has the potential to emerge as a high-prevalence pathogen in the coming years, future research should focus on filling the knowledge gaps identified in this review.
Pancani, T;Day, M;Tkatch, T;Wokosin, DL;González-Rodríguez, P;Kondapalli, J;Xie, Z;Chen, Y;Beaumont, V;Surmeier, DJ;
PMID: 36914640 | DOI: 10.1038/s41467-023-36556-3
Huntington's disease (HD) is a progressive, neurodegenerative disease caused by a CAG triplet expansion in huntingtin. Although corticostriatal dysfunction has long been implicated in HD, the determinants and pathway specificity of this pathophysiology are not fully understood. Here, using a male zQ175+/- knock-in mouse model of HD we carry out optogenetic interrogation of intratelencephalic and pyramidal tract synapses with principal striatal spiny projection neurons (SPNs). These studies reveal that the connectivity of intratelencephalic, but not pyramidal tract, neurons with direct and indirect pathway SPNs increased in early symptomatic zQ175+/- HD mice. This enhancement was attributable to reduced pre-synaptic inhibitory control of intratelencephalic terminals by striatal cholinergic interneurons. Lowering mutant huntingtin selectively in striatal cholinergic interneurons with a virally-delivered zinc finger repressor protein normalized striatal acetylcholine release and intratelencephalic functional connectivity, revealing a node in the network underlying corticostriatal pathophysiology in a HD mouse model.
Didiot MC, Ferguson CM, Ly S, Coles AH, Smith AO, Bicknell AA, Hall LM, Sapp E, Echeverria D, Pai AA, DiFiglia M, Moore MJ, Hayward LJ, Aronin N, Khvorova A.
PMID: 30184490 | DOI: 10.1016/j.celrep.2018.07.106
Huntington's disease (HD) is a monogenic neurodegenerative disorder representing an ideal candidate for gene silencing with oligonucleotide therapeutics (i.e., antisense oligonucleotides [ASOs] and small interfering RNAs [siRNAs]). Using an ultra-sensitive branched fluorescence in situ hybridization (FISH) method, we show that ∼50% of wild-type HTT mRNA localizes to the nucleus and that its nuclear localization is observed only in neuronal cells. In mouse brain sections, we detect Htt mRNA predominantly in neurons, with a wide range of Htt foci observed per cell. We further show that siRNAs and ASOs efficiently eliminate cytoplasmic HTT mRNA and HTT protein, but only ASOs induce a partial but significant reduction of nuclear HTT mRNA. We speculate that, like other mRNAs, HTT mRNA subcellular localization might play a role in important neuronal regulatory mechanisms.
Gu, X;Richman, J;Langfelder, P;Wang, N;Zhang, S;Bañez-Coronel, M;Wang, HB;Yang, L;Ramanathan, L;Deng, L;Park, CS;Choi, CR;Cantle, JP;Gao, F;Gray, M;Coppola, G;Bates, GP;Ranum, LPW;Horvath, S;Colwell, CS;Yang, XW;
PMID: 35114102 | DOI: 10.1016/j.neuron.2022.01.006
In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes. Unlike prior mHTT transgenic models with stable, CAA-interrupted, polyglutamine-encoding repeats, BAC-CAG mice show robust striatum-selective nuclear inclusions and transcriptional dysregulation resembling those in murine huntingtin knockin models and HD patients. Importantly, the striatal transcriptionopathy in HD models is significantly correlated with their uninterrupted CAG repeat length but not polyglutamine length. Finally, among the pathogenic entities originating from mHTT genomic transgenes and only present or enriched in the uninterrupted CAG repeat model, somatic CAG repeat instability and nuclear mHTT aggregation are best correlated with early-onset striatum-selective molecular pathogenesis and locomotor and sleep deficits, while repeat RNA-associated pathologies and repeat-associated non-AUG (RAN) translation may play less selective or late pathogenic roles, respectively.
Novel Morbillivirus as Putative Cause of Fetal Death and Encephalitis among Swine
Emerging infectious diseases
Arruda, B;Shen, H;Zheng, Y;Li, G;
PMID: 34152961 | DOI: 10.3201/eid2707.203971
Morbilliviruses are highly contagious pathogens. The Morbillivirus genus includes measles virus, canine distemper virus (CDV), phocine distemper virus (PDV), peste des petits ruminants virus, rinderpest virus, and feline morbillivirus. We detected a novel porcine morbillivirus (PoMV) as a putative cause of fetal death, encephalitis, and placentitis among swine by using histopathology, metagenomic sequencing, and in situ hybridization. Phylogenetic analyses showed PoMV is most closely related to CDV (62.9% nt identities) and PDV (62.8% nt identities). We observed intranuclear inclusions in neurons and glial cells of swine fetuses with encephalitis. Cellular tropism is similar to other morbilliviruses, and PoMV viral RNA was detected in neurons, respiratory epithelium, and lymphocytes. This study provides fundamental knowledge concerning the pathology, genome composition, transmission, and cellular tropism of a novel pathogen within the genus Morbillivirus and opens the door to a new, applicable disease model to drive research forward.