Albisetti, GW;Ganley, RP;Pietrafesa, F;Werynska, K;Magalhaes de Sousa, M;Sipione, R;Scheurer, L;Bösl, MR;Pelczar, P;Wildner, H;Zeilhofer, HU;
PMID: 36323322 | DOI: 10.1016/j.neuron.2022.10.008
Proper sensing of ambient temperature is of utmost importance for the survival of euthermic animals, including humans. While considerable progress has been made in our understanding of temperature sensors and transduction mechanisms, the higher-order neural circuits processing such information are still only incompletely understood. Using intersectional genetics in combination with circuit tracing and functional neuron manipulation, we identified Kcnip2-expressing inhibitory (Kcnip2GlyT2) interneurons of the mouse spinal dorsal horn as critical elements of a neural circuit that tunes sensitivity to cold. Diphtheria toxin-mediated ablation of these neurons increased cold sensitivity without affecting responses to other somatosensory modalities, while their chemogenetic activation reduced cold and also heat sensitivity. We also show that Kcnip2GlyT2 neurons become activated preferentially upon exposure to cold temperatures and subsequently inhibit spinal nociceptive output neurons that project to the lateral parabrachial nucleus. Our results thus identify a hitherto unknown spinal circuit that tunes cold sensitivity.
Mu, R;Tang, S;Han, X;Wang, H;Yuan, D;Zhao, J;Long, Y;Hong, H;
PMID: 35649349 | DOI: 10.1016/j.celrep.2022.110882
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Chen, W;Liu, X;Li, W;Shen, H;Zeng, Z;Yin, K;Priest, JR;Zhou, Z;
PMID: 34569705 | DOI: 10.15252/embr.202152389
The migratory cardiac neural crest cells (CNCCs) contribute greatly to cardiovascular development. A thorough understanding of the cell lineages, developmental chronology, and transcriptomic states of CNCC derivatives during normal development is essential for deciphering the pathogenesis of CNCC-associated congenital anomalies. Here, we perform single-cell transcriptomic sequencing of 34,131 CNCC-derived cells in mouse hearts covering eight developmental stages between E10.5 and P7. We report the presence of CNCC-derived mural cells that comprise pericytes and microvascular smooth muscle cells (mVSMCs). Furthermore, we identify the transition from the CNCC-derived pericytes to mVSMCs and the key regulators over the transition. In addition, our data support that many CNCC derivatives had already committed or differentiated to a specific lineage when migrating into the heart. We explore the spatial distribution of some critical CNCC-derived subpopulations with single-molecule fluorescence in situ hybridization. Finally, we computationally reconstruct the differentiation path and regulatory dynamics of CNCC derivatives. Our study provides novel insights into the cell lineages, developmental chronology, and regulatory dynamics of CNCC derivatives during development.
Zhao, Q;Yu, CD;Wang, R;Xu, QJ;Dai Pra, R;Zhang, L;Chang, RB;
PMID: 35296859 | DOI: 10.3760/cma.j.cn112151-20210719-00516
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
CCL21 activation of the MALAT1/SRSF1/mTOR axis underpins the development of gastric carcinoma
Journal of translational medicine
Fu, Q;Tan, X;Tang, H;Liu, J;
PMID: 34001131 | DOI: 10.1186/s12967-021-02806-5
As a significant cause of malignancy mortality, gastric carcinoma (GC) has been well documented to be an often-fatal diagnosis. Despite the limitations of effective therapy, immunotherapy has emerged as a promising therapeutic approach capable of killing cancer cells via the immune system. The current study was conducted to investigate the effect of cytokine C-C motif chemokine ligand 21 (CCL21) on GC progression through the metastasis-associated lung adenocarcinoma transcript 1/serine arginine-rich splicing factor 1/mammalian target of rapamycin (MALAT1/SRSF1/mTOR) axis. Bioinformatics analysis was conducted to identify the key genes associated with GC and to subsequently predict their downstream genes. The effect of CCL21, MALAT1, and SRSF1 on the malignant phenotypes and epithelial-mesenchymal transition (EMT) of SGC-7901 and MGC-803 cells in-vitro and the tumorigenesis of SGC-7901 and MGC-803 cells in-vivo were assessed by expression determination and plasmid transfection. Additionally, RNA pull-down and RNA binding protein immunoprecipitation experiments were performed to determine the MALAT1-microRNA-202-3p (miR-203-3p) interaction and miR-202-3p-SRSF1 interaction followed by the analysis of their effect on the mTOR pathway. CCL21 was identified as a key GC immune gene. Overexpressed CCL21, MALAT1, and SRSF1 along with poorly expressed miR-202-3p were identified in the GC cells. CCL21 induced the MALAT1 expression in a time- and dose-dependent manner. Functionally, MALAT1 targeted miR-202-3p but upregulated SRSF1 and activated mTOR. Crucially, evidence was obtained indicating that CCL21 promoted both the malignant phenotypes and EMT of SGC-7901 and MGC-803 cells in-vitro and the tumorigenesis of SGC-7901 and MGC-803 cells in-vivo by increasing the MALAT1-induced upregulation of SRSF1. Taken together, the key observations of our study provide evidence that CCL21 enhances the progression of GC via the MALAT1/SRSF1/mTOR axis, providing a novel therapeutic target for the treatment of GC.
Huang, XT;Li, T;Li, T;Xing, S;Tian, JZ;Ding, YF;Cai, SL;Yang, YS;Wood, C;Yang, JS;Yang, WJ;
PMID: 36516755 | DOI: 10.1016/j.celrep.2022.111796
Intestinal epithelial replenishment is fueled by continuously dividing intestinal stem cells (ISCs) resident at the crypt niche. However, the cell type(s) enabling replenishment upon damage and subsequent loss of whole crypts remain largely unclear. Using Set domain-containing protein 4 (Setd4), we identify a small population with reserve stem cell characteristics in the mouse intestine. Upon irradiation-induced injury, Setd4-expressing (Setd4+) cells survive radiation exposure and then activate to produce Sca-1-expressing cell types to restore the epithelial wall and regenerate crypts de novo via crypt fission. Setd4+ cells are confirmed to originate from the early fetal period, subsequently contributing to the development of embryonic gut and the establishment of postnatal crypts. Setd4+ cells are therefore represented as both originators and key regenerators of the intestine.
Cheung, V;Chung, P;Bjorni, M;Shvareva, VA;Lopez, YC;Feinberg, EH;
PMID: 34936877 | DOI: 10.1016/j.celrep.2021.110131
Behavior arises from concerted activity throughout the brain. Consequently, a major focus of modern neuroscience is defining the physiology and behavioral roles of projection neurons linking different brain areas. Single-cell RNA sequencing has facilitated these efforts by revealing molecular determinants of cellular physiology and markers that enable genetically targeted perturbations such as optogenetics, but existing methods for sequencing defined projection populations are low throughput, painstaking, and costly. We developed a straightforward, multiplexed approach, virally encoded connectivity transgenic overlay RNA sequencing (VECTORseq). VECTORseq repurposes commercial retrogradely infecting viruses typically used to express functional transgenes (e.g., recombinases and fluorescent proteins) by treating viral transgene mRNA as barcodes within single-cell datasets. VECTORseq is compatible with different viral families, resolves multiple populations with different projection targets in one sequencing run, and identifies cortical and subcortical excitatory and inhibitory projection populations. Our study provides a roadmap for high-throughput identification of neuronal subtypes based on connectivity.
Ghitani N, Barik A, Szczot M, Thompson JH, Li C, Le Pichon CE, Krashes MJ, Chesler AT.
PMID: 28817806 | DOI: 10.1016/j.neuron.2017.07.024
The somatosensory system provides animals with the ability to detect, distinguish, and respond to diverse thermal, mechanical, and irritating stimuli. While there has been progress in defining classes of neurons underlying temperature sensation and gentle touch, less is known about the neurons specific for mechanical pain. Here, we use in vivo functional imaging to identify a class of cutaneous sensory neurons that are selectively activated by high-threshold mechanical stimulation (HTMRs). We show that their optogenetic excitation evokes rapid protective and avoidance behaviors. Unlike other nociceptors, these HTMRs are fast-conducting Aδ-fibers with highly specialized circumferential endings wrapping the base of individual hair follicles. Notably, we find that Aδ-HTMRs innervate unique but overlapping fields and can be activated by stimuli as precise as the pulling of a single hair. Together, the distinctive features of this class of Aδ-HTMRs appear optimized for accurate and rapid localization of mechanical pain.
Lin, X;Swedlund, B;Ton, MN;Ghazanfar, S;Guibentif, C;Paulissen, C;Baudelet, E;Plaindoux, E;Achouri, Y;Calonne, E;Dubois, C;Mansfield, W;Zaffran, S;Marioni, JC;Fuks, F;Göttgens, B;Lescroart, F;Blanpain, C;
PMID: 35817961 | DOI: 10.1038/s41556-022-00947-3
The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism
Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.