Cytokine RNA In Situ Hybridization Permits Individualized Molecular Phenotyping in Biopsies of Psoriasis and Atopic Dermatitis
Wang, A;Fogel, A;Murphy, M;Panse, G;McGeary, M;McNiff, J;Bosenberg, M;Vesely, M;Cohen, J;Ko, C;King, B;Damsky, W;
| DOI: 10.1016/j.xjidi.2021.100021
Detection of individual cytokines in routine biopsies from patients with inflammatory skin diseases has the potential to personalize diagnosis and treatment selection, but this approach has been limited by technical feasibility. We evaluate whether a chromogen-based RNA in situ hybridization approach can be used to detect druggable cytokines in psoriasis and atopic dermatitis. A series of psoriasis (n = 20) and atopic dermatitis (n = 26) biopsies were stained using RNA in situ hybridization for IL4, IL12B (IL-12/23 p40), IL13, IL17A, IL17F, IL22, IL23A (IL-23 p19), IL31, and TNF (TNF-α). NOS2 and IFNG, canonical psoriasis biomarkers, were also included. All 20 of the psoriasis cases were positive for IL17A, which tended to be the predominant cytokine, although some cases had relatively higher levels of IL12B, IL17F, or IL23A. The majority of cytokine expression in psoriasis was epidermal. A total of 22 of 26 atopic dermatitis cases were positive for IL13, also at varying levels; a subset of cases had significant IL4, IL22, or IL31 expression. Patterns were validated in independent bulk RNA-sequencing and single-cell RNA-sequencing datasets. Overall, RNA in situ hybridization for cytokines appears highly specific with virtually no background staining and may allow for individualized evaluation of treatment-relevant cytokine targets in biopsies from patients with inflammatory skin disorders.
Scandinavian journal of gastroenterology
James, JP;Nielsen, BS;Langholz, E;Malham, M;Høgdall, E;Riis, LB;
PMID: 37246424 | DOI: 10.1080/00365521.2023.2217313
Tumour necrosis factor-α (TNF) antagonists have improved the management of inflammatory bowel disease (IBD), however, their usage and administration persist to be suboptimal. Here, we examined the relationship between tissue-specific TNF mRNA expression in mucosal biopsies from IBD patients and anti-TNF treatment response.Archived tissue samples from patients with luminal IBD that had all been or were in treatment with anti-TNF were included (18 adults and 24 paediatric patients). Patients were stratified into three groups according to anti-TNF response: responders, primary non-responders (PNR) and secondary loss of response (SLOR). TNF mRNA was detected using RNAscope in situ hybridisation (ISH) and the expression was quantified using image analysis.The ISH analysis showed varying occurrence of TNF mRNA positive cells located in lamina propria and often with increased density in lymphoid follicles (LF). Consequently, expression estimates were obtained in whole tissue areas with and without LF. Significantly higher TNF mRNA expression levels were measured in adults compared to paediatric patients in both the analyses with and without LF (p = .015 and p = .016, respectively). Considering the relation to response, the adult and paediatric patients were evaluated separately. In adults, the TNF expression estimates were higher in PNRs compared to responders with and without LF (p = .017 and p = .024, respectively).Our data indicate that adult PNR have significantly higher TNF mRNA levels than responders. This suggests that higher anti-TNF dose may be considered for IBD patients with high TNF mRNA expression estimates from the start of treatment.
Sasaki, K;Hayamizu, Y;Murakami, R;Toi, M;Iwai, K;
PMID: 37060248 | DOI: 10.1002/1873-3468.14623
Tumor-elicited inflammation confers tumorigenic properties, including cell death resistance, proliferation, or immune evasion. To focus on inflammatory signaling in tumors, we investigated linear ubiquitination, which enhances the nuclear factor-κB signaling pathway and prevents extrinsic programmed cell death under inflammatory environments. Here, we showed that linear ubiquitination was augmented especially in tumor cells around a necrotic core. Linear ubiquitination allowed melanomas to tolerate the hostile tumor microenvironment and to extend a necrosis-containing morphology. Loss of linear ubiquitination resulted in few necrotic lesions and growth regression, further leading to repression of innate anti-PD-1 therapy resistance signatures in melanoma as well as activation of interferon responses and antigen presentation that promote immune-mediated tumor eradication. Collectively, linear ubiquitination promotes tumor-specific tissue remodeling and the ensuing immune evasion.
A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis
Proceedings of the National Academy of Sciences of the United States of America
Mifflin, L;Hu, Z;Dufort, C;Hession, CC;Walker, AJ;Niu, K;Zhu, H;Liu, N;Liu, JS;Levin, JZ;Stevens, B;Yuan, J;Zou, C;
PMID: 33766915 | DOI: 10.1073/pnas.2025102118
Microglial-derived inflammation has been linked to a broad range of neurodegenerative and neuropsychiatric conditions, including amyotrophic lateral sclerosis (ALS). Using single-cell RNA sequencing, a class of Disease-Associated Microglia (DAMs) have been characterized in neurodegeneration. However, the DAM phenotype alone is insufficient to explain the functional complexity of microglia, particularly with regard to regulating inflammation that is a hallmark of many neurodegenerative diseases. Here, we identify a subclass of microglia in mouse models of ALS which we term RIPK1-Regulated Inflammatory Microglia (RRIMs). RRIMs show significant up-regulation of classical proinflammatory pathways, including increased levels of Tnf and Il1b RNA and protein. We find that RRIMs are highly regulated by TNFα signaling and that the prevalence of these microglia can be suppressed by inhibiting receptor-interacting protein kinase 1 (RIPK1) activity downstream of the TNF receptor 1. These findings help to elucidate a mechanism by which RIPK1 kinase inhibition has been shown to provide therapeutic benefit in mouse models of ALS and may provide an additional biomarker for analysis in ongoing phase 2 clinical trials of RIPK1 inhibitors in ALS.
Investigative Ophthalmology & Visual Science
Oikawa, K;Kiland, J;Mathu, V;Torne, O;
METHODS : Retinal, optic nerve head (ONH) and distal optic nerve (ON) tissues from 8 juvenile 10-12 week-old cats (4 males and 4 females) with feline congenital glaucoma (FCG) and 5 age-matched normal control cats (3 males and 2 females) were used. Data for weekly intraocular pressure (IOP) and optic nerve axon counts were available for all subjects. Protein and gene expression in tissue cryosections were examined by immunofluorescence labeling (IF) and RNAscope in situ hybridization (ISH), respectively. Retinal tissue was IF labeled for myeloid cell marker, IBA-1 and flat-mounted. ISH for markers of infiltrating monocytes/macrophages (_CCR2_) and proinflammatory cytokines (_IL1A_, _C1QA_, _TNF_) was performed. Microglia were identified by IF of homeostatic microglial marker, P2RY12. Microscopy images wereanalyzed using Image J, QuPath and Imaris. Two-tailed unpaired t-test or Mann-Whitney test or ANOVA were used for between-group comparisons (p
Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer
Proceedings of the National Academy of Sciences of the United States of America
Miyata, K;Imai, Y;Hori, S;Nishio, M;Loo, TM;Okada, R;Yang, L;Nakadai, T;Maruyama, R;Fujii, R;Ueda, K;Jiang, L;Zheng, H;Toyokuni, S;Sakata, T;Shirahige, K;Kojima, R;Nakayama, M;Oshima, M;Nagayama, S;Seimiya, H;Hirota, T;Saya, H;Hara, E;Takahashi, A;
PMID: 34426493 | DOI: 10.1073/pnas.2025647118
Cellular senescence causes a dramatic alteration of chromatin organization and changes the gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies through the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained by the CCCTC-binding factor (CTCF); however, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains unclear. We discovered that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impairs the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin and activates the transcription of SASP-like inflammatory genes, promoting malignant transformation. Notably, pericentromeric ncRNA was transferred into surrounding cells via small extracellular vesicles acting as a tumorigenic SASP factor. Because CTCF blocks the expression of pericentromeric ncRNA in young cells, the down-regulation of CTCF during cellular senescence triggers the up-regulation of this ncRNA and SASP-related inflammatory gene expression. In this study, we show that pericentromeric ncRNA provokes chromosomal alteration by inhibiting CTCF, leading to a SASP-like inflammatory response in a cell-autonomous and non-cell-autonomous manner and thus may contribute to the risk of tumorigenesis during aging.