Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (65)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • (-) Remove COL1A1 filter COL1A1 (38)
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • (-) Remove GFP filter GFP (26)
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (15) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (12) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (6) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (6) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Brown Assay (5) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • Basescope (1) Apply Basescope filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 LS Assay - RED (1) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter

Research area

  • Neuroscience (20) Apply Neuroscience filter
  • Other (9) Apply Other filter
  • Development (8) Apply Development filter
  • Inflammation (7) Apply Inflammation filter
  • Cancer (6) Apply Cancer filter
  • Bone (3) Apply Bone filter
  • CGT (2) Apply CGT filter
  • Fibrosis (2) Apply Fibrosis filter
  • Injury (2) Apply Injury filter
  • Other: Lung (2) Apply Other: Lung filter
  • Stem cell (2) Apply Stem cell filter
  • Aging (1) Apply Aging filter
  • Anxiety (1) Apply Anxiety filter
  • Atherosclerosis (1) Apply Atherosclerosis filter
  • Behavior (1) Apply Behavior filter
  • Cardiology (1) Apply Cardiology filter
  • circRNA (1) Apply circRNA filter
  • circRNAs (1) Apply circRNAs filter
  • Collagen-Replacement Therapy (1) Apply Collagen-Replacement Therapy filter
  • Developement (1) Apply Developement filter
  • Developmental (1) Apply Developmental filter
  • diabetes (1) Apply diabetes filter
  • Endrocrinology (1) Apply Endrocrinology filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Heart Failure (1) Apply Heart Failure filter
  • human health (1) Apply human health filter
  • Hypoxia (1) Apply Hypoxia filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammation Bone (1) Apply Inflammation Bone filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Kidney (1) Apply Kidney filter
  • Liver (1) Apply Liver filter
  • Neural Mapping (1) Apply Neural Mapping filter
  • Other: Hypertension (1) Apply Other: Hypertension filter
  • Other: Skin (1) Apply Other: Skin filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Regeneration (1) Apply Regeneration filter
  • Sighing (1) Apply Sighing filter
  • Teeth (1) Apply Teeth filter

Category

  • Publications (65) Apply Publications filter
Recombinant adeno-associated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain

Neurobiology of Aging

Polinski NK, Gombash SE, Manfredsson FP, Lipton JW, Kemp CJ, Cole-Strauss A, Kanaan NM, Steece-Collier K, Kuhn NC, Wohlgenant SL, Sortwell CE.
PMID:  http

Clinical trials are examining the efficacy of viral vector-mediated gene delivery for treating Parkinson’s disease (PD). While viral vector strategies have been successful in preclinical studies, to date clinical trials have disappointed. This may be due to the fact that preclinical studies fail to account for aging. Aging is the single greatest risk factor for developing PD and age alters cellular processes utilized by viral vectors. We hypothesized that the aged brain would be relatively resistant to transduction when compared to the young adult. We examined recombinant adeno-associated virus 2/5 mediated green fluorescent protein (rAAV2/5 GFP) expression in the young adult and aged rat nigrostriatal system. GFP overexpression was produced in both age groups. However, following rAAV2/5 GFP injection to the substantia nigra (SN) aged rats displayed 40-60% less GFP protein in the striatum, regardless of rat strain or duration of expression. Further, aged rats exhibited 40% fewer cells expressing GFP and 4-fold less GFP mRNA. rAAV2/5-mediated gene transfer is compromised in the aged rat midbrain, with deficiencies in early steps of transduction leading to significantly less mRNA and protein expression.
CB1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome

Clinical and translational medicine

2021 Jul 01

Cinar, R;Park, JK;Zawatsky, CN;Coffey, NJ;Bodine, SP;Abdalla, J;Yokoyama, T;Jourdan, T;Jay, L;Zuo, MXG;O'Brien, KJ;Huang, J;Mackie, K;Alimardanov, A;Iyer, MR;Gahl, WA;Kunos, G;Gochuico, BR;Malicdan, MCV;
PMID: 34323400 | DOI: 10.1002/ctm2.471

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Modelling TGFβR and Hh pathway regulation of prognostic matrisome molecules in ovarian cancer

iScience

2021 May 01

Delaine-Smith, R;Maniati, E;Malacrida, B;Nichols, S;Roozitalab, R;Jones, R;Lecker, L;Pearce, O;Knight, M;Balkwill, F;
| DOI: 10.1016/j.isci.2021.102674

In a multi-level ‘deconstruction’ of omental metastases, we previously identified a prognostic matrisome gene expression signature in high-grade serous ovarian cancer (HGSOC) and twelve other malignancies. Here, our aim was to understand how six of these extracellular matrix, ECM, molecules, COL11A1, COMP, FN1, VCAN, CTSB and COL1A1, are up-regulated in cancer. Using biopsies, we identified significant associations between TGFβR activity, Hedgehog signalling and these ECM molecules and studied the associations in mono-, co- and tri-culture. Activated omental fibroblasts produced more matrix than malignant cells, directed by TGFβR and Hedgehog signalling crosstalk. We ‘reconstructed’ omental metastases in tri-cultures of HGSOC cells, omental fibroblasts and adipocytes. This combination was sufficient to generate all six ECM proteins and the matrisome expression signature. TGFβR and Hedgehog inhibitor combinations attenuated fibroblast activation, gel and ECM remodelling in these models. The tri-culture model reproduces key features of omental metastases and allows study of diseased-associated ECM.
Impact of age and vector construct on striatal and nigral transgene expression

MOLECULAR THERAPY — METHODS & CLINICAL DEVELOPMENT

2016 Dec 07

Polinski NK, Manfredsson FP, Benskey MJ, Fischer DL, Kemp CJ, Steece-Collier K, Sandoval IM, Paumier KL, Sortwell CE.
PMID: - | DOI: 10.1038/mtm.2016.82

Therapeutic protein delivery using viral vectors has shown promise in preclinical models of Parkinson’s disease (PD) but clinical trial success remains elusive. This may partially be due to a failure to include advanced age as a covariate despite aging being the primary risk factor for PD. We investigated transgene expression following intracerebral injections of recombinant adeno-associated virus pseudotypes 2/2 (rAAV2/2), 2/5 (rAAV2/5), 2/9 (rAAV2/9), and lentivirus (LV) expressing green fluorescent protein (GFP) in aged versus young adult rats. Both rAAV2/2 and rAAV2/5 yielded lower GFP expression following injection to either the aged substantia nigra or striatum. rAAV2/9-mediated GFP expression was deficient in the aged striatonigral system but displayed identical transgene expression between ages in the nigrostriatal system. Young and aged rats displayed equivalent GFP levels following LV injection to the striatonigral system but LV-delivered GFP was deficient in delivering GFP to the aged nigrostriatal system. Notably, age-related transgene expression deficiencies revealed by protein quantitation were poorly predicted by GFP-immunoreactive cell counts. Further, in situ hybridization for the viral CβA promoter revealed surprisingly limited tropism for astrocytes compared to neurons. Our results demonstrate that aging is a critical covariate to consider when designing gene therapy approaches for PD.

Enpp1 inhibits ectopic joint calcification and maintains articular chondrocytes by repressing Hedgehog signaling.

Development.

2018 Aug 15

Jin Y, Cong Q, Gvozdenovic-Jeremic J, Hu J, Zhang Y, Terkeltaub R, Yang Y.
PMID: 30111653 | DOI: 10.1242/dev.164830

The differentiated phenotype of articular chondrocytes of synovial joints needs to be maintained throughout life. Disruption of the articular cartilage, frequently associated with chondrocyte hypertrophy and calcification, is a central feature in osteoarthritis (OA). However, the molecular mechanisms whereby phenotypes of articular chondrocytes are maintained and pathological calcification is inhibited remain poorly understood. Recently, the ecto-enzyme ENPP1, a suppressor of pathological calcification, was reported to be decreased in joint cartilage with OA in both human and mouse, and Enpp1 deficiency causes joint calcification. Here we found that Hedgehog signaling activation contributes to ectopic joint calcification in the Enpp1-/- mice. In the Enpp1-/- joints, Hedgehog signaling was upregulated. Further activation of Hedgehog signaling by removing Patched 1 in the Enpp1-/- mice enhanced ectopic joint calcification, while removing Gli2 partially rescued the ectopic calcification phenotype. Additionally, reduction of Gαs in the Enpp1-/- mice also enhanced joint calcification, suggesting Enpp1 inhibited Hedgehog signaling and chondrocyte hypertrophy by activating Gαs-PKA signaling. Our findings provide new insights in the mechanisms underlying Enpp1 regulation of joint integrity.

PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2

Neuron

2018 Sep 27

Duan L, Zhang XD, Miao WX, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X.
PMID: - | DOI: 10.1016/j.neuron.2018.08.030

Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitabilityby promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.

ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification.

Nat Biotechnol.

2018 Nov 12

Rouhanifard SH, Mellis IA, Dunagin M, Bayatpour S, Jiang CL, Dardani I, Symmons O, Emert B, Torre E, Cote A, Sullivan A, Stamatoyannopoulos JA, Raj A.
PMID: 30418432 | DOI: 10.1038/nbt.4286

Methods for detecting single nucleic acids in cell and tissues, such as fluorescence in situ hybridization (FISH), are limited by relatively low signal intensity and nonspecific probe binding. Here we present click-amplifying FISH (clampFISH), a method for fluorescence detection of nucleic acids that achieves high specificity and high-gain (>400-fold) signal amplification. ClampFISH probes form a 'C' configuration upon hybridization to the sequence of interest in a double helical manner. The ends of the probes are ligated together using bio-orthogonal click chemistry, effectively locking the probes around the target. Iterative rounds of hybridization and click amplify the fluorescence intensity. We show that clampFISH enables the detection of RNA species with low-magnification microscopy and in RNA-based flow cytometry. Additionally, we show that the modular design of clampFISH probes allows multiplexing of RNA and DNA detection, that the locking mechanism prevents probe detachment in expansion microscopy, and that clampFISH can be applied in tissue samples.

Targeted alveolar regeneration with Frizzled-specific agonists

Cell

2023 Jun 14

Nabhan, AN;Webster, JD;Adams, JJ;Blazer, L;Everrett, C;Eidenschenk, C;Arlantico, A;Fleming, I;Brightbill, HD;Wolters, PJ;Modrusan, Z;Seshagiri, S;Angers, S;Sidhu, SS;Newton, K;Arron, JR;Dixit, VM;
PMID: 37321220 | DOI: 10.1016/j.cell.2023.05.022

Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Fuzheng Kang-Ai inhibits NSCLC cell proliferation via regulating hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway

Phytomedicine : international journal of phytotherapy and phytopharmacology

2023 Jun 01

Tang, Q;Wang, X;Zhou, Q;Li, Q;Yang, X;Xu, M;Wang, R;Chen, J;Wu, W;Wang, S;
PMID: 37062135 | DOI: 10.1016/j.phymed.2023.154819

Current treatments for lung cancer have their own deficiencies, such as severe adverse effect. Therefore, more safe and effective drugs are needed.Fuzheng Kang-Ai (FZKA for short) has been applied as an adjuvant treatment in advanced Non-Small Cell Lung Cancer (NSCLC) patients for decades in China, showing a definitive effect with minimal toxicities. However, the underlying mechanism is yet to be identified.Both in vitro and in vivo experiments were performed in this study to identify the exact mechanism by which FZKA inhibits NSCLC cell proliferation.MTT and CCK-8 assays were used to detect cell viability. Xenograft model was performed for in vivo experiments. CircRNA and miRNA sequencing were used to find the differentially expressed circRNAs and miRNAs, respectively. qRT-PCR was performed to check the expression levels of circRNA, miRNA and mRNA. BaseScope was carried out to observe the expression of circRNA in situ. Actinomycin D and RNase R experiments were done to show the stability of circRNA. Nuclear-cytoplasmic fractionation and FISH were used to identify the localization of circRNA and miRNA. Pull-down, RIP, and luciferase activity assays were performed to show the biding ability of circRNA, miRNA and target proteins. Flow cytometry was done to observe cell apoptosis. Western blot and IHC were done to detect the protein expression. TCGA database was used to analyze the survival rate.FZKA inhibits NSCLC cell proliferation both in vitro and in vivo. Hsa_circ_0048091 and hsa-miR-378g were the most differentially expressed circRNA and miRNA, respectively, after FZKA treatment. Silencing hsa_circ_0048091 and overexpressing hsa-miR-378g promoted cell proliferation and reversed the inhibition effect of FZKA on NSCLC, respectively. Hsa-miR-378g was sponged by hsa_circ_0048091, and the overexpression of miR-378g reversed the inhibition effect of hsa_ circ_0048091 on NSCLC. ARRDC3, as a target of hsa-miR-378g, was increased by FZKA treatment. Silencing ARRDC3 reversed both the inhibition effect of FZKA and miR-378g inhibitor on NSCLC.This study, for the first time, has established the function of hsa_circ_0048091, hsa- miR-378g, and ARRDC3 in lung cancer. It also shows that FZKA inhibits NSCLC cell proliferation through hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway, uncovering a novel mechanism by which FZKA controls human NSCLC cell growth.
Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons

Nature communications

2022 Sep 26

Matson, KJE;Russ, DE;Kathe, C;Hua, I;Maric, D;Ding, Y;Krynitsky, J;Pursley, R;Sathyamurthy, A;Squair, JW;Levi, BP;Courtine, G;Levine, AJ;
PMID: 36163250 | DOI: 10.1038/s41467-022-33184-1

After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or augment recovery. Targeting these cells requires a clearer understanding of their injury responses and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. Using this resource, we find rare spinal neurons that express a signature of regeneration in response to injury, including a major population that represent spinocerebellar projection neurons. We characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the spinal cord and cerebellum. Together, this work provides a key resource for studying cellular responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering a potential candidate for targeted therapy.
Neurogliaform cortical interneurons derive from cells in the preoptic area.

Elife.

2018 Mar 20

Niquille M, Limoni G, Markopoulos F, Cadilhac C, Prados J, Holtmaat A, Dayer A.
PMID: 29557780 | DOI: 10.7554/eLife.32017

Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs.

Catabolic activity of osteoblast-lineage cells contributes to osteoclastic bone resorption in vitro.

J Cell Sci.

2019 Apr 11

Pirapaharan DC, Olesen JB, Andersen TL, Christensen SB, Kjærsgaard-Andersen P, Delaisse JM, Søe K.
PMID: 30975918 | DOI: 10.1242/jcs.229351

Osteoblast-lineage cells in bone human were recently shown to colonize eroded bone surfaces and to closely interact with osteoclasts. They proved identical with reversal cells and are believed to differentiate into bone forming osteoblasts thereby coupling resorption and formation. However, they also exert catabolic activity that contributes to osteoclastic bone resorption, but this has not received much attention. Herein, we used co-cultures of primary human osteoblast-lineage cells and human osteoclasts derived from peripheral blood monocytes to investigate whether a catabolic activity of osteoblast-lineage cells may impact on osteoclastic bone resorption. Through a combination of immunofluorescence, in-situ hybridization, and time-lapse we show that MMP-13 expressing osteoblast-lineage cells are attracted to and closely interact with bone resorbing osteoclasts. This close interaction results in a strong and significant increase in the bone resorptive activity of osteoclasts - especially those making trenches. Importantly, we show that osteoclastic bone resorption becomes sensitive to inhibition of matrix metalloproteinases in the presence, but not in the absence, of osteoblast-lineage cells. We propose that this may be due to the direct action of osteoblast-lineage-derived MMP-13 on bone resorption.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?