ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cellular and Molecular Gastroenterology and Hepatology
2018 Aug 24
Xu H, Li J, Chen H, Ghishan FK.
PMID: - | DOI: 10.1016/j.jcmgh.2018.08.005
Abstract
Background and Aims
Lgr5 overexpression has been detected in colorectal cancers (CRCs), including some cases of colitis-associated CRCs. In colitis-associated CRCs, chronic inflammation is a contributing factor in carcinogenesis. We recently reported that intestinal sodium/hydrogen exchanger isoform 8 (NHE8) plays an important role in intestinal mucosal protection and that loss of NHE8 expression results in ulcerative colitis (UC)-like condition. Therefore, we hypothesized that NHE8 may be involved in the development of intestinal tumors.
Methods
We assessed NHE8 expression in human CRCs by IHC and studied tumor burden in NHE8KO mice using an AOM/DSS colon cancer model. We also evaluated cell proliferation in HT29NHE8KO cells and assessed tumor growth in NSG mice xenografted with HT29NHE8KO cells. To verify if a relationship exists between Lgr5 and NHE8 expression, we analyzed Lgr5 expression in NHE8KO mice by PCR and in situ hybridization. Lgr5 expression and cell proliferation in the absence of NHE8 were confirmed in colonic organoid cultures. The expression of β-catenin and c-Myc were also analyzed to evaluate Wnt/β-catenin activation.
Results
NHE8 was undetectable in human CRC tissues. Whereas only 9% of NHE8WT mice exhibited tumorigenesis in the AOM/DSS colon cancer model, almost ten times more NHE8KO mice (89%) developed tumors. In the absence of NHE8, a higher colony formation unit was discovered in HT29NHE8KO cells. In NSG mice, larger tumors developed at the site where HT29NHE8KO cells were injected compared to HT29NHE8WT cells. Furthermore, NHE8 deficiency resulted in elevated Lgr5 expression in the colon, in HT29 derived tumors, and in colonoids. The absence of NHE8 also increased Wnt/β-catenin activation.
Conclusions
NHE8 might be an intrinsic factor that regulates Wnt/β-catenin in the intestine.
Scientific reports
2021 Sep 07
Lee, HJ;Myung, JK;Kim, HS;Lee, DH;Go, HS;Choi, JH;Koh, HM;Lee, SJ;Jang, B;
PMID: 34493772 | DOI: 10.1038/s41598-021-97351-y
Pathol Int.
2016 Sep 01
Nakajima T, Uehara T, Maruyama Y, Iwaya M, Kobayashi Y, Ota H.
PMID: 27593551 | DOI: 10.1111/pin.12451
Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is a putative intestinal stem cell marker that is also expressed in various tumors. To analyze its pathological characteristics in mucosal gastric signet-ring cell carcinoma (SRCC), we investigated Lgr5 expression in 35 intramucosal gastric SRCC patients using RNAscope, a newly developed RNA in situ hybridization technique. Lgr5 expression in individual tumor cells was scored semi-quantitatively from 0 to 400. Ki67 was also examined by immunohistochemistry, with a linear arrangement of Ki67-expressing cells present in 20 of 35 cases. This area of Ki67-expressing cells was topographically divided into upper, middle, and lower regions. All cases with linear Ki67 expression patterns also had Lgr5-positive cells arranged in a linear fashion in the lower area-which was distinct from the area of high Ki67 expression. The rate of Ki67 positivity in Lgr5-positive cells was significantly lower than that of Lgr5-negative cells in areas of high Ki67 expression. In intramucosal SRCC, the low mitotic activity of Lgr5-positive cells suggests that they may represent cancer stem cells as seen in other types of stomach carcinomas. Intramucosal SRCC may therefore contain stem cells expressing Lgr5 in the lower area of the lamina propria, akin to normal gastric pyloric mucosa.
Diagnostic pathology
2022 Feb 05
Kamakura, M;Uehara, T;Iwaya, M;Asaka, S;Kobayashi, S;Nakajima, T;Kinugawa, Y;Nagaya, T;Yoshizawa, T;Shimizu, A;Ota, H;Umemura, T;
PMID: 35123536 | DOI: 10.1186/s13000-022-01203-w
Digestive diseases and sciences
2021 Jun 03
Tobe, Y;Uehara, T;Nakajima, T;Iwaya, M;Kobayashi, Y;Kinugawa, Y;Kuraishi, Y;Ota, H;
PMID: 34081250 | DOI: 10.1007/s10620-021-07059-2
DNA repair
2022 Apr 16
Parker, C;Chambers, AC;Flanagan, DJ;Ho, JWY;Collard, TJ;Ngo, G;Baird, DM;Timms, P;Morgan, RG;Sansom, OJ;Williams, AC;
PMID: 35468497 | DOI: 10.1016/j.dnarep.2022.103331
Virchows Arch.
2017 Jan 09
Jang BG, Lee C, Kim HS, Shin MS, Cheon MS, Kim JW, Kim WH.
PMID: 28070642 | DOI: 10.1007/s00428-016-2061-3
Mammalian epidermis, which is composed of hair follicles, sebaceous glands, and interfollicular epidermis, is maintained by discrete stem cells. In vivo lineage tracing demonstrated that murine LGR5 cells are mainly responsible for hair follicle regeneration whereas LGR6 cells generate sebaceous glands and interfollicular epidermis. However, little is known about their expression in the human skin tumors. In this study, we investigated the expression profile of LGR5 and LGR6 in a variety of human skin tumors including basaloid tumors with follicular differentiation (94 basal cell carcinomas, 18 trichoepitheliomas, 3 basaloid follicular hamartomas, and 12 pilomatricomas) and tumors with ductal differentiation (7 eccrine poromas, 8 hidradenomas, and 5 spiradenomas). LGR5 expression was highest in basal cell carcinomas (BCCs) followed by trichoepitheliomas (TEs) and basaloid follicular hamartomas. LGR6 had the same expression pattern as LGR5, even though its expression was lower. Interestingly, LGR6 expression was detected in stromal cells around the tumor and papillary mesenchymal bodies of TEs but not in stromal cells of BCCs, suggesting different characteristics of tumor-associated fibroblasts between TEs and BCCs. It was unexpected to find that pilomatricomas exclusively expressed LGR6, and its expression was limited to the basaloid cells. Notably, LGR6-positive cells were observed in sweat gland ductal cells in normal skin. This might explain, in part, the finding that LGR6 expression was relatively higher in basaloid tumors with ductal differentiation than in those with follicular differentiation. In particular, spiradenomas displayed the same distribution pattern of LGR6 as normal sweat glands, suggesting the possibility of LGR6-positive cells as tumor stem cells. In conclusion, we documented the different expression patterns of stem cell markers, LGR5 and LGR6 in various skin tumors. These data may provide important insights to understand the origin and development of basaloid skin tumors.
Endocr Pathol.
2017 Jun 28
Covach A, Patel S, Hardin H, Lloyd RV.
PMID: 28660408 | DOI: 10.1007/s12022-017-9490-7
Oncocytic (Hürthle cell) and follicular neoplasms are related thyroid tumors with distinct molecular profiles. Diagnostic criteria separating adenomas and carcinomas for these two types of neoplasms are similar, but there may be some differences in the biological behavior of Hürthle cell and follicular carcinomas. Recent studies have shown that noncoding RNAs may have diagnostic and prognostic utility in separating benign and malignant Hürthle cell and follicular neoplasms. In this study, we examined expression of various noncoding RNAs including metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and miR-RNA-885-5p (miR-885) in distinguishing between benign and malignant neoplasms. In addition, the expression of phosphorylated mechanistic receptor of rapamycin (p-mTOR) was also analyzed in these two groups of tumors. Tissue microarrays (TMAs) with archived tissue samples were analyzed using in situ hybridization (ISH) for MALAT1 and miR-885 and immunohistochemistry (IHC) for p-mTOR. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was also performed on a subset of the cases.MALAT1 and miR-885 were increased in all neoplastic groups compared to the normal thyroid tissues (p < 0.05). MALAT1 was more highly expressed in HCCs compared to FTCs, although the differences were not statistically significant (p = 0.06). MiR-885 was expressed at similar levels in FTCs and HCCs. P-mTOR protein was more highly expressed in FTCs than in HCCs (p<0.001). qRT-PCR analysis of noncoding RNAs supported the ISH findings. These results indicate that the noncoding RNAs MALAT1 and miR-885 show increased expression in neoplastic follicular and Hürthle cell thyroid neoplasms compared to normal thyroid tissues. P-mTOR was most highly expressed in FTC but was also increased in HCC, suggesting that drugs targeting this pathway may be useful for treatment of tumors unresponsive to conventional therapies.
Cell & bioscience
2021 Jun 22
Xue, L;Bao, L;Roediger, J;Su, Y;Shi, B;Shi, YB;
PMID: 34158114 | DOI: 10.1186/s13578-021-00627-z
Endocr Pathol.
2016 Sep 30
Zhang R, Hardin H, Huang W, Chen J, Asioli S, Righi A, Maletta F, Sapino A, Lloyd RV.
PMID: 27696303 | DOI: 10.1007/s12022-016-9453-4
Long non-coding RNAs (lncRNAs) are important for transcription and for epigenetic or posttranscriptional regulation of gene expression and may contribute to carcinogenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNA involved in the regulation of the cell cycle, cell proliferation, and cell migration, is known to be deregulated in multiple cancers. Here, we analyzed the expression of MALAT1 on 195 cases of benign and malignant thyroid neoplasms by using tissue microarrays for RNA in situ hybridization (ISH) and real-time PCR. MALAT1 is highly expressed in normal thyroid (NT) tissues and thyroid tumors, with increased expression during progression from NT to papillary thyroid carcinomas (PTCs) but is downregulated in poorly differentiated thyroid cancers (PDCs) and anaplastic thyroid carcinomas (ATCs) compared to NT. Induction of epithelial to mesenchymal transition (EMT) by transforming growth factor (TGF)-beta in a PTC cell line (TPC1) led to increased MALAT1 expression, supporting a role for MALAT1 in EMT in thyroid tumors. This is the first ISH study of MALAT1 expression in thyroid tissues. It also provides the first piece of evidence suggesting MALAT1 downregulation in certain thyroid malignancies. Our findings support the notion that ATCs may be molecularly distinct from low-grade thyroid malignancies and suggest that MALAT1 may function both as an oncogene and as a tumor suppressor in different types of thyroid tumors.
J Clin Pathol.
2015 Aug 31
Zhang Z, Weaver DL, Olsen D, deKay J, Peng Z, Ashikaga T, Evans MF.
PMID: 26323944 | DOI: 10.1136/jclinpath-2015-203275
Abstract
AIM:
Long non-coding RNAs (lncRNAs) are potential biomarkers for breast cancer risk stratification. LncRNA expression has been investigated primarily by RNA sequencing, quantitative reverse transcription PCR or microarray techniques. In this study, six breast cancer-implicated lncRNAs were investigated by chromogenic in situ hybridisation (CISH).
METHODS:
Invasive breast carcinoma (IBC), ductal carcinoma in situ (DCIS) and normal adjacent (NA) breast tissues from 52 patients were screened by CISH. Staining was graded by modified Allred scoring.
RESULTS:
HOTAIR, H19 and KCNQ1OT1 had significantly higher expression levels in IBC and DCIS than NA (p<0.05), and HOTAIR and H19 were expressed more strongly in IBC than in DCIS tissues (p<0.05). HOTAIR and KCNQ101T were expressed in tumour cells; H19 and MEG3 were expressed in stromal microenvironment cells; MALAT1 was expressed in all cells strongly and ZFAS1 was negative or weakly expressed in all specimens.
CONCLUSION:
These data corroborate the involvement of three lncRNAs (HOTAIR, H19 and KCNQ1OT1) in breast tumourigenesis and support lncRNA CISH as a potential clinical assay. Importantly, CISH allows identification of the tissue compartment expressing lncRNA.
Am J Pathol.
2018 Jul 20
Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, Kang GH.
PMID: 30036518 | DOI: 10.1016/j.ajpath.2018.06.012
We investigated the expression profile of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) during colorectal cancer (CRC) progression and determined the prognostic impact of LGR5 in a large cohort of CRC samples. LGR5 expression was higher in CRCs than in normal mucosa, and was not associated with other cancer stem cell markers. LGR5 positivity was observed in 68% of 788 CRCs and was positively correlated with old age, well-to-moderate differentiation, and nuclear β-catenin expression. Enhanced LGR5 expression remained persistent during the adenoma-carcinoma transition, but markedly declined in the budding cancer cells at the invasive fronts, which was not due to altered Wnt or epithelial to mesenchymal transition signaling. LGR5 showed negative correlations with microsatellite instability and CpG island methylator phenotype, and was not associated with KRAS and BRAF mutations. Notably, LGR5 positivity was an independent prognostic marker for better clinical outcomes in CRC patients. LGR5 overexpression attenuated tumor growth by decreasing ERK phosphorylation along with decreased colony formation and migration abilities in DLD1 cells. Likewise, knockdown of LGR5 expression resulted in a decline in the colony- forming and migration capacities in LoVo cells. Taken together, our data suggest the suppressive role of LGR5 in CRC progression.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com