Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (7)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • (-) Remove Cxcl1 filter Cxcl1 (5)
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter

Research area

  • (-) Remove Cancer filter Cancer (7)
  • HPV (2) Apply HPV filter

Category

  • Publications (7) Apply Publications filter
RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis.

J Clin Invest.

2016 Jul 25

Lesina M, Wörmann SM, Morton J, Diakopoulos KN, Korneeva O, Wimmer M, Einwächter H, Sperveslage J, Demir IE, Kehl T, Saur D, Sipos B, Heikenwälder M, Steiner JM, Wang TC, Sansom OJ, Schmid RM, Algül H.
PMID: 27454298 | DOI: 10.1172/JCI86477

Tumor suppression that is mediated by oncogene-induced senescence (OIS) is considered to function as a safeguard during development ofpancreatic ductal adenocarcinoma (PDAC). However, the mechanisms that regulate OIS in PDAC are poorly understood. Here, we have determined that nuclear RelA reinforces OIS to inhibit carcinogenesis in the Kras mouse model of PDAC. Inactivation of RelA acceleratedpancreatic lesion formation in Kras mice by abrogating the senescence-associated secretory phenotype (SASP) gene transcription signature. Using genetic and pharmacological tools, we determined that RelA activation promotes OIS via elevation of the SASP factor CXCL1 (also known as KC), which activates CXCR2, during pancreatic carcinogenesis. In Kras mice, pancreas-specific inactivation of CXCR2 prevented OIS and was correlated with increased tumor proliferation and decreased survival. Moreover, reductions in CXCR2 levels were associated with advanced neoplastic lesions in tissue from human pancreatic specimens. Genetically disabling OIS in Kras mice caused RelA to promote tumor proliferation, suggesting a dual role for RelA signaling in pancreatic carcinogenesis. Taken together, our data suggest a pivotal role for RelA in regulating OIS in preneoplastic lesions and implicate the RelA/CXCL1/CXCR2 axis as an essential mechanism of tumor surveillance in PDAC.

Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism

Nature medicine

2022 Apr 01

Monteiro, C;Miarka, L;Perea-García, M;Priego, N;García-Gómez, P;Álvaro-Espinosa, L;de Pablos-Aragoneses, A;Yebra, N;Retana, D;Baena, P;Fustero-Torre, C;Graña-Castro, O;Troulé, K;Caleiras, E;Tezanos, P;Muela, P;Cintado, E;Trejo, JL;Sepúlveda, JM;González-León, P;Jiménez-Roldán, L;Moreno, LM;Esteban, O;Pérez-Núñez, Á;Hernández-Lain, A;Mazarico Gallego, J;Ferrer, I;Suárez, R;Garrido-Martín, EM;Paz-Ares, L;Dalmasso, C;Cohen-Jonathan Moyal, E;Siegfried, A;Hegarty, A;Keelan, S;Varešlija, D;Young, LS;Mohme, M;Goy, Y;Wikman, H;Fernández-Alén, J;Blasco, G;Alcázar, L;Cabañuz, C;Grivennikov, SI;Ianus, A;Shemesh, N;Faria, CC;Lee, R;Lorigan, P;Le Rhun, E;Weller, M;Soffietti, R;Bertero, L;Ricardi, U;Bosch-Barrera, J;Sais, E;Teixidor, E;Hernández-Martínez, A;Calvo, A;Aristu, J;Martin, SM;Gonzalez, A;Adler, O;Erez, N;RENACER, ;Valiente, M;
PMID: 35411077 | DOI: 10.1038/s41591-022-01749-8

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.
The loss of epithelial Smad4 drives immune evasion via CXCL1 while displaying vulnerability to combinatorial immunotherapy in gastric cancer

Cell reports

2022 Dec 27

An, HW;Seok, SH;Kwon, JW;Choudhury, AD;Oh, JS;Voon, DC;Kim, DY;Park, JW;
PMID: 36577366 | DOI: 10.1016/j.celrep.2022.111878

SMAD4 is frequently mutated and inactivated in human gastric cancer (GC). Although the epithelial cell-autonomous functions of Smad4 have been extensively studied, its contribution to tumor immunity is largely undetermined. Here, we report that the loss of Smad4 expression in GC cells endows them with the ability to evade tumor immunity. Unlike their Smad4-proficient counterparts, Smad4-deficient stomach organoids can evade host immunity to form tumors in immunocompetent mice. Smad4-deficient GC cells show expanded CD133+ cancer stem-like cells while suppressing dendritic cell (DC) differentiation and cytotoxic T cells with granulocytic myeloid-derived suppressor cell (G-MDSC) accumulation through a secretome containing CXCL1. Moreover, Smad4 deficiency increases programmed cell death ligand-1 (PD-L1) and decreases 4-1BBL expressions, indicating a change in immunogenicity. Combinatorial immune checkpoint blockade (ICB) of anti-PD-L1 and anti-CTLA-4 or agonistic anti-4-1BB antibodies effectively treats ICB monotherapy-resistant Smad4-deficient allografts, exposing a specific vulnerability. Collectively, these data provide a rational basis for ICB strategies in treating advanced GC with Smad4 deficiency.
Utility of high-risk HPV RNA chromogenic in situ hybridization in cytology smears and liquid-based preparations from metastatic head and neck squamous cell carcinoma

Cancer cytopathology

2022 Nov 09

Velez Torres, JM;Alkathery, T;Tjendra, Y;Zuo, Y;Kerr, DA;Gomez-Fernandez, C;
PMID: 36350307 | DOI: 10.1002/cncy.22659

High-risk human papillomavirus (HR-HPV) status is critical for the diagnosis, prognosis, and treatment of patients with oropharyngeal squamous cell carcinoma (OPSCC). Patients often present with enlarged cervical nodes, and fine-needle aspiration cytology (FNAC) is frequently the initial diagnostic procedure. Although p16 is the most widely used surrogate marker, problems with interpretation can limit its utility in FNAC. HR-HPV RNA in situ hybridization (ISH) has emerged as a specific way to assess HPV status on cell block preparations of cervical nodes. The authors evaluated the utility of HR-HPV ISH in conventional smears and liquid-based cytology (LBC) preparations of metastatic head and neck squamous cell carcinoma (SCC).Thirty-one aspirates of proven, HPV-related SCC (confirmed by p16 and/or HR-HPV ISH in corresponding surgical specimens) were selected. Ten aspirates of HPV-negative SCC were also retrieved. HR-HPV ISH was performed on 27 smears and 14 LBC preparations. All results were scored as positive, equivocal, or negative.Eighty-four percent of metastatic, HPV-related SCCs were positive for HR-HPV RNA ISH, with high number of signals (n = 19) and low number of signals (n = 7), whereas five HPV-related SCCs were equivocal. All metastatic, HPV-negative SCCs were negative for HR-HPV ISH.HR-HPV ISH can be reliably performed on smears or LBC preparations, particularly when cell blocks are unavailable or paucicellular. Results were easy to interpret when high numbers of signals were present but were challenging in aspirates with low or rare number of signals. The current study suggests that HR-HPV ISH could be used as the initial testing modality for determining HPV status in FNAC specimens of metastatic SCC.
Stage IA1 HPV-associated cervical squamous cell carcinoma metastasizing to ovary by special pathway: a case report and literature review

Journal of ovarian research

2022 Feb 03

Zhang, Y;Zhang, X;Wang, H;Shen, D;
PMID: 35115032 | DOI: 10.1186/s13048-022-00949-7

As the leading cancer of the female reproductive tract, it is not uncommon for human papilloma virus (HPV)-associated cervical squamous cell carcinoma (HPV-CSCC) to metastasize to pelvic organs and lymph nodes in advanced stages. However, herein, we present a rare case in which superficial invasive HPV-CSCC metastasized to the unilateral ovary as a large mass by spreading directly through the endometrium and fallopian tubes and lymph-vascular space invasion. The case is so unexpected that the misdiagnosis most likely could be proceeded as a primary ovarian cancer.A 58-year-old postmenopausal woman presented vaginal bleeding for more than 4 months, never received hormonal treatment and had no family history of malignant diseases. Routine ultrasound revealed a 12 × 10 × 10 cm right ovarian mass. Intraoperative frozen section was diagnosed as a borderline Brenner tumour with local highly suspected invasive carcinoma. Accordingly, omentectomy surgery then occurred. Unbelievably, by observation under a microscope, immunohistochemistrial staining, and HPV RNA scope, we found that the carcinoma originated from the uterine cervix. In the uterine cervix, stage IA1 superficial invasive squamous carcinoma was found, and the carcinoma directly spread to the endometrium and bilateral fallopian tube, was planted into the right ovary and eventually grew as a large mass. Moreover, lymph-vascular space invasion (LVSI) was also discovered. To date, the patient has been given 6 cycles of chemotherapy and has experienced no recurrence.The diagnosis of superficial invasive cervical squamous cell carcinoma metastasizing to the ovary is very challenging for pathological doctors, especially in intraoperative consultations.
Spatially organized multicellular immune hubs in human colorectal cancer

Cell

2021 Aug 24

Pelka, K;Hofree, M;Chen, JH;Sarkizova, S;Pirl, JD;Jorgji, V;Bejnood, A;Dionne, D;Ge, WH;Xu, KH;Chao, SX;Zollinger, DR;Lieb, DJ;Reeves, JW;Fuhrman, CA;Hoang, ML;Delorey, T;Nguyen, LT;Waldman, J;Klapholz, M;Wakiro, I;Cohen, O;Albers, J;Smillie, CS;Cuoco, MS;Wu, J;Su, MJ;Yeung, J;Vijaykumar, B;Magnuson, AM;Asinovski, N;Moll, T;Goder-Reiser, MN;Applebaum, AS;Brais, LK;DelloStritto, LK;Denning, SL;Phillips, ST;Hill, EK;Meehan, JK;Frederick, DT;Sharova, T;Kanodia, A;Todres, EZ;Jané-Valbuena, J;Biton, M;Izar, B;Lambden, CD;Clancy, TE;Bleday, R;Melnitchouk, N;Irani, J;Kunitake, H;Berger, DL;Srivastava, A;Hornick, JL;Ogino, S;Rotem, A;Vigneau, S;Johnson, BE;Corcoran, RB;Sharpe, AH;Kuchroo, VK;Ng, K;Giannakis, M;Nieman, LT;Boland, GM;Aguirre, AJ;Anderson, AC;Rozenblatt-Rosen, O;Regev, A;Hacohen, N;
PMID: 34450029 | DOI: 10.1016/j.cell.2021.08.003

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.
121: INTERLEUKIN-8 IS A POTENTIAL MEDIATOR OF CHEMOTHERAPY RESPONSE IN PANCREATIC DUCTAL ADENOCARCINOMA

Gastroenterology

2022 May 01

Carpenter, E;Kadiyala, P;Kemp, S;Steele, N;Elhossiny, A;Sirihorachai, V;Du, W;The, S;Freeman, J;Bhalla, S;Anderson, M;Kwon, R;Wamsteker, E;Machicado, J;Schulman, A;Law, R;Prabhu, A;Gunchick, V;Frankel, T;Bednar, F;Sahai, V;Magliano, M;
| DOI: 10.1016/S0016-5085(22)60064-7

Abstract Unavailable
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?