Savage, A;Risquez, C;Gomi, K;Schreiner, R;Borczuk, AC;Worgall, S;Silver, RB;
PMID: 36910476 | DOI: 10.3389/fmed.2023.1139397
In addition to the traditional activation of resident receptors by release of local mediators, new evidence favors the existence of exosomes in cell-to-cell communication that mediates delivery of specific cargo to modulate recipient cell function. We report that mast cell exosomes are an additional source of pro-fibrotic substances and constitute a unique pathway for the generation of excess collagen.We use primary human lung fibroblasts (HLFs) to demonstrate the uptake of labeled exosomes isolated from the human mast cell line HMC-1 (MC-EXOs), previously shown to contain protein cargo in common with human mast cell exosomes.The MC-EXO uptake by HLF is to the cytosol and increases both proline hydroxylation in HLF lysate and secreted collagen, within 24 h, which is sustained over 72 h, the same time required for transforming growth factor-β (TGF-β) to activate collagen synthesis in the HLFs. Unlike TGF-β, MC-EXO uptake does not induce fibrillar gene activation or invoke the Smad-nuclear transcription pathway. We show that MC-EXO uptake and TGF-β have an additive effect on collagen synthesis in HLF and postulate that MC-EXO uptake by HLFs is a contributing factor to excess collagen synthesis and represents a unique paradigm for understanding fibrosis.It is known that, in the lungs, mast cells are more activated and increase in number with inflammation, injury and viral infection associated with fibrosis. With the reported increased incidence of post-COVID-pulmonary fibrosis (PCPF), data from patients with severe COVID-19 are presented that show an increase in the mast cell number in lung parenchyma, the site of PCPF. Our findings provide a rationale for targeting multiple fibrogenic pathways in the management of lung fibrosis and the use of mast cell exosomes as a biomarker for the prognostic and diagnostic management of evolving fibrotic lung disease.
Velez Torres, JM;Alkathery, T;Tjendra, Y;Zuo, Y;Kerr, DA;Gomez-Fernandez, C;
PMID: 36350307 | DOI: 10.1002/cncy.22659
High-risk human papillomavirus (HR-HPV) status is critical for the diagnosis, prognosis, and treatment of patients with oropharyngeal squamous cell carcinoma (OPSCC). Patients often present with enlarged cervical nodes, and fine-needle aspiration cytology (FNAC) is frequently the initial diagnostic procedure. Although p16 is the most widely used surrogate marker, problems with interpretation can limit its utility in FNAC. HR-HPV RNA in situ hybridization (ISH) has emerged as a specific way to assess HPV status on cell block preparations of cervical nodes. The authors evaluated the utility of HR-HPV ISH in conventional smears and liquid-based cytology (LBC) preparations of metastatic head and neck squamous cell carcinoma (SCC).Thirty-one aspirates of proven, HPV-related SCC (confirmed by p16 and/or HR-HPV ISH in corresponding surgical specimens) were selected. Ten aspirates of HPV-negative SCC were also retrieved. HR-HPV ISH was performed on 27 smears and 14 LBC preparations. All results were scored as positive, equivocal, or negative.Eighty-four percent of metastatic, HPV-related SCCs were positive for HR-HPV RNA ISH, with high number of signals (n = 19) and low number of signals (n = 7), whereas five HPV-related SCCs were equivocal. All metastatic, HPV-negative SCCs were negative for HR-HPV ISH.HR-HPV ISH can be reliably performed on smears or LBC preparations, particularly when cell blocks are unavailable or paucicellular. Results were easy to interpret when high numbers of signals were present but were challenging in aspirates with low or rare number of signals. The current study suggests that HR-HPV ISH could be used as the initial testing modality for determining HPV status in FNAC specimens of metastatic SCC.
Sodagar, A;Javed, R;Tahir, H;Razak, SIA;Shakir, M;Naeem, M;Yusof, AHA;Sagadevan, S;Hazafa, A;Uddin, J;Khan, A;Al-Harrasi, A;
PMID: 35883527 | DOI: 10.3390/biom12070971
The number of deaths has been increased due to COVID-19 infections and uncertain neurological complications associated with the central nervous system. Post-infections and neurological manifestations in neuronal tissues caused by COVID-19 are still unknown and there is a need to explore how brainstorming promoted congenital impairment, dementia, and Alzheimer's disease. SARS-CoV-2 neuro-invasion studies in vivo are still rare, despite the fact that other beta-coronaviruses have shown similar properties. Neural (olfactory or vagal) and hematogenous (crossing the blood-brain barrier) pathways have been hypothesized in light of new evidence showing the existence of SARS-CoV-2 host cell entry receptors into the specific components of human nerve and vascular tissue. Spike proteins are the primary key and structural component of the COVID-19 that promotes the infection into brain cells. Neurological manifestations and serious neurodegeneration occur through the binding of spike proteins to ACE2 receptor. The emerging evidence reported that, due to the high rate in the immediate wake of viral infection, the olfactory bulb, thalamus, and brain stem are intensely infected through a trans-synaptic transfer of the virus. It also instructs the release of chemokines, cytokines, and inflammatory signals immensely to the blood-brain barrier and infects the astrocytes, which causes neuroinflammation and neuron death; and this induction of excessive inflammation and immune response developed in more neurodegeneration complications. The present review revealed the pathophysiological effects, molecular, and cellular mechanisms of possible entry routes into the brain, pathogenicity of autoantibodies and emerging immunotherapies against COVID-19.
Journal of ovarian research
Zhang, Y;Zhang, X;Wang, H;Shen, D;
PMID: 35115032 | DOI: 10.1186/s13048-022-00949-7
As the leading cancer of the female reproductive tract, it is not uncommon for human papilloma virus (HPV)-associated cervical squamous cell carcinoma (HPV-CSCC) to metastasize to pelvic organs and lymph nodes in advanced stages. However, herein, we present a rare case in which superficial invasive HPV-CSCC metastasized to the unilateral ovary as a large mass by spreading directly through the endometrium and fallopian tubes and lymph-vascular space invasion. The case is so unexpected that the misdiagnosis most likely could be proceeded as a primary ovarian cancer.A 58-year-old postmenopausal woman presented vaginal bleeding for more than 4 months, never received hormonal treatment and had no family history of malignant diseases. Routine ultrasound revealed a 12 × 10 × 10 cm right ovarian mass. Intraoperative frozen section was diagnosed as a borderline Brenner tumour with local highly suspected invasive carcinoma. Accordingly, omentectomy surgery then occurred. Unbelievably, by observation under a microscope, immunohistochemistrial staining, and HPV RNA scope, we found that the carcinoma originated from the uterine cervix. In the uterine cervix, stage IA1 superficial invasive squamous carcinoma was found, and the carcinoma directly spread to the endometrium and bilateral fallopian tube, was planted into the right ovary and eventually grew as a large mass. Moreover, lymph-vascular space invasion (LVSI) was also discovered. To date, the patient has been given 6 cycles of chemotherapy and has experienced no recurrence.The diagnosis of superficial invasive cervical squamous cell carcinoma metastasizing to the ovary is very challenging for pathological doctors, especially in intraoperative consultations.
Primard, C;Monchâtre-Leroy, E;Del Campo, J;Valsesia, S;Nikly, E;Chevandier, M;Boué, F;Servat, A;Wasniewski, M;Picard-Meyer, E;Courant, T;Collin, N;Salguero, F;Le Vert, A;Guyon-Gellin, D;Nicolas, F;
| DOI: 10.3389/fimmu.2023.1188605
Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM , a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Case reports in pathology
Butler, JT;Chellappan, R;Litovsky, S;Leal, SM;Benson, PV;
PMID: 37180570 | DOI: 10.1155/2023/9998749
While rare, coronary stent infections present with significant mortality-with most infections and further complications occurring within months of percutaneous coronary intervention (PCI). Here, we discuss a post-COVID-19 patient who presented approximately one year after PCI for declotting of an arteriovenous graft (AVG). Upon admission, the patient was found to be bacteremic with multilobar pneumonia and an infection of the AVG. Empiric antibiotics were started, and blood cultures were subsequently positive for MRSA. Removal of the AVG was unsuccessful, and two days after admission, the patient passed. Autopsy revealed a perivascular abscess in the RCA near the origin of the stent with a ground section of the RCA with stent revealing abundant calcific atherosclerosis and marked necrosis of the artery wall. The cause of death was determined to be sepsis complicating coronary artery disease and chronic renal failure.