ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Development (Cambridge, England)
2021 May 15
Kaiser, K;Jang, A;Kompanikova, P;Lun, MP;Prochazka, J;Machon, O;Dani, N;Prochazkova, M;Laurent, B;Gyllborg, D;van Amerongen, R;Fame, RM;Gupta, S;Wu, F;Barker, RA;Bukova, I;Sedlacek, R;Kozmik, Z;Arenas, E;Lehtinen, MK;Bryja, V;
PMID: 34032267 | DOI: 10.1242/dev.192054
Proceedings of the National Academy of Sciences of the United States of America
2023 Jun 06
Dias, CM;Issac, B;Sun, L;Lukowicz, A;Talukdar, M;Akula, SK;Miller, MB;Walsh, K;Rockowitz, S;Walsh, CA;
PMID: 37252957 | DOI: 10.1073/pnas.2300052120
Acta pharmacologica Sinica
2021 Nov 22
Zhang, YM;Ye, LY;Li, TY;Guo, F;Guo, F;Li, Y;Li, YF;
PMID: 34811511 | DOI: 10.1038/s41401-021-00807-0
Biological Psychiatry Global Open Science
2023 Apr 01
Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001
Neuron
2022 Feb 01
Topilko, T;Diaz, SL;Pacheco, CM;Verny, F;Rousseau, CV;Kirst, C;Deleuze, C;Gaspar, P;Renier, N;
PMID: 35123655 | DOI: 10.1016/j.neuron.2022.01.012
Am J Pathol.
2018 Jan 16
Sucre JMS, Deutsch GH, Jetter C, Ambalavanan N, Benjamin JT, Gleaves LA, Millis BA, Young LR, Blackwell TS, Kropski JA, Guttentag SH.
PMID: 29355514 | DOI: 10.1016/j.ajpath.2017.12.004
Wnt/β-catenin signaling is necessary for normal lung development, and abnormal Wnt signaling contributes to the pathogenesis of both bronchopulmonary dysplasia (BPD) and idiopathic pulmonary fibrosis (IPF), fibrotic lung diseases that occur during infancy and aging, respectively. Using a library of human normal and diseased human lung samples, we identified a distinct signature of nuclear accumulation of β-catenin phosphorylated at tyrosine 489 and epithelial cell cytosolic localization of β-catenin phosphorylated at tyrosine 654 in early normal lung development and fibrotic lung diseases BPD and IPF. Furthermore, this signature was recapitulated in murine models of BPD and IPF. Image analysis of immunofluorescence co-localization demonstrated a consistent pattern of elevated nuclear phosphorylated β-catenin in the lung epithelium and surrounding mesenchyme in BPD and IPF, closely resembling the pattern observed in 18-week fetal lung. Nuclear β-catenin phosphorylated at tyrosine 489 associated with an increased expression of Wnt target gene AXIN2, suggesting that the observed β-catenin signature is of functional significance during normal development and injury repair. The association of specific modifications of β-catenin during normal lung development and again in response to lung injury supports the widely held concept that repair of lung injury involves the recapitulation of developmental programs. Furthermore, these observations suggest that β-catenin phosphorylation has potential as a therapeutic target for the treatment and prevention of both BPD and IPF.
Nat Commun.
2019 Apr 02
Kaiser K, Gyllborg D, Procházka J, Salašová A, Kompaníková P, Molina FL, Laguna-Goya R, Radaszkiewicz T, Harnoš J, Procházková M, Potěšil D, Barker RA, Casado AG, Zdráhal Z, Sedláček R, Arenas E, Villaescusa JC, Bryja V.
PMID: 30940800 | DOI: 10.1038/s41467-019-09298-4
WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.
JCI insight
2023 Jan 10
Dada, LA;Welch, LC;Magnani, ND;Ren, Z;Han, H;Brazee, PL;Celli, D;Flozak, AS;Weng, A;Herrerias, MM;Kryvenko, V;Vadász, I;Runyan, CE;Abdala-Valencia, H;Shigemura, M;Casalino-Matsuda, SM;Misharin, AV;Budinger, GRS;Gottardi, CJ;Sznajder, JI;
PMID: 36626234 | DOI: 10.1172/jci.insight.159331
Cell reports
2022 Sep 20
Kim, S;Oh, H;Choi, SH;Yoo, YE;Noh, YW;Cho, Y;Im, GH;Lee, C;Oh, Y;Yang, E;Kim, G;Chung, WS;Kim, H;Kang, H;Bae, Y;Kim, SG;Kim, E;
PMID: 36130507 | DOI: 10.1016/j.celrep.2022.111398
Neuroscience letters
2022 Aug 26
Jin, S;Maddern, XJ;Campbell, EJ;Lawrence, AJ;
PMID: 36038028 | DOI: 10.1016/j.neulet.2022.136858
Kidney International (2016).
2016 Mar 25
Madan B, Patel MB, Zhang J, Bunte RM, Rudemiller NP, Griffiths R, Virshup DM, Crowley SD.
PMID: - | DOI: 10.1016/j.kint.2016.01.017
Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.
Nature
2019 May 01
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob F, Jiang X, Martorell AJ, Ransohoff RM, Hafler BP, Bennett DA, Kellis M, Tsai LH.
PMID: 31042697 | DOI: 10.1038/s41586-019-1195-2
Alzheimer's disease (AD) is a pervasive neurodegenerative disorder, the molecular and cellular complexity of which remains poorly understood. Here, we profiled and analysed 80,660 single-nucleus transcriptomes from prefrontal cortex of 48 individuals with varying degrees of AD pathology. We identified transcriptionally-distinct subpopulations across six major brain cell-types, including those associated with pathology and characterized by regulators of myelination, inflammation, and neuron survival. The strongest AD-associated changes appeared early in pathological progression and were highly cell-type-specific, whereas genes upregulated in late-stage were common across cell types and primarily involved in global stress response. Surprisingly, we found an overrepresentation of female cells in AD-associated subpopulations, and substantially different transcriptional responses between sexes in multiple cell types, including oligodendrocytes. Overall, myelination-related processes were recurrently perturbed in multiple cell types, suggesting a key role in AD pathophysiology. Our single-celltranscriptomic resource provides a first blueprint for interrogating the molecular underpinnings and cellular basis of AD.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com