Virchows Archiv (2015): 1-9.
Hauck F, Oliveira-Silva M, Dreyer JH, Ferreira Perrusi VJ, Arcuri RA, Hassan R, Bonvicino CR, Barros MHM, Niedobitek G.
PMID: 25820374 | DOI: 10.1007/s00428-015-1761-4
Rising prevalence rates of high-risk human papillomaviruses (hrHPV) infection in oropharyngeal carcinoma (up to 80 %) have been reported in North America and Scandinavia. We have analysed 424 German and 163 Brazilian head and neck squamous cell carcinomas (HNSCC) from the oral cavity (OSCC), oropharynx (OPSCC) and hypopharynx (HPSCC) using p16 immunohistochemistry, HPV DNA PCR and sequencing, hrHPV DNA in situ hybridisation (ISH) and hrHPV E6/E7 RNA ISH. In the German series, 52/424 cases (12.3 %) were p16-positive/hrHPV-positive (OSCC 3.8 % [10/265], OPSCC 34.4 % [42/122], HPSCC 0 % [0/37]). In addition, there were 9 cases that were p16-positive/hrHPV-negative (5 OPSCC and 4 OSCC). In the Brazilian series, the overall hrHPV DNA prevalence by PCR was 11.0 % ([18/163]; OSCC 6 % [5/83], OPSCC 15.5 % [11/71], HPSCC 22.2 % [2/9]). Ten of these cases were hrHPV-positive/p16-positive. The remaining 8 hrHPV-positive/p16-negative cases were also negative in both ISH assays. Furthermore, 5 p16-positive/hrHPV-negative cases (2 OPSCC and 3 OSCC) were identified. In both series, HPV16 was by far the most common HPV type detected. We confirm that regardless of geographical origin, the highest hrHPV prevalence in HNSCC is observed in oropharyngeal carcinomas. The proportion of HPV-associated OPSCC was substantially higher in the German cohort than in the Brazilian series (34.4 vs. 15.5 %), and in both groups, the prevalence of hrHPV in OPSCC was much lower than in recent reports from North America and Scandinavia. We suggest, therefore, that it may be possible to define areas with high (e.g. USA, Canada, Scandinavia), intermediate (e.g. Germany) and low (e.g. Brazil) prevalences of HPV infection in OPSCC.
Human pathology, 44(4):487–94.
Kim MA, Jung JE, Lee HE, Yang HK, Kim WH (2013)
PMID: 23084583 | DOI: 10.1016/j.humpath.2012.06.022.
The importance of anti-HER2 therapy has focused attention on the ability of clinical assays to correctly assign HER2 amplification status. In the present study, we evaluated HER2 mRNA expression using a new mRNA in situ detection technique called RNAscope in 211 cases of formalin-fixed, paraffin-embedded gastric carcinoma. In addition, we compared the results with the conventional methods of immunohistochemistry, fluorescence in situ hybridization, and dual-color silver in situ hybridization. RNA in situ hybridization (in situ hybridization) showed that 162 cases (76.8%) were score 0, 5 cases (2.4%) were score 1, 10 cases (4.7%) were score 2, 13 cases (6.2%) were score 3, and 21 cases (10.0%) were score 4. HER2 transcription levels were found to be significantly related to pT class, pN class, and tumor recurrence. mRNA expression was well correlated with protein overexpression and gene amplification; 20 cases out of 23 with DNA amplification showed a score of 4 in RNA in situ hybridization (P < .001). Three cases showed false negative and one case showed false positive results by in situ hybridization. More studies are needed to determine whether the in situ hybridization method can identify additional patients that may benefit from anti-HER2 therapy or exclude those who may be resistant to anti-HER2 therapy.
PLoS One. 2014 May 30;9(5):e98528.
Seo AN, Kwak Y, Kim DW, Kang SB, Choe G, Kim WH, Lee HS.
PMID: 24879338 | DOI: 10.1371/journal.pone.0098528
This study aimed at determining the incidence and clinical implications of HER2 status in primary colorectal cancer (CRC). HER2 status was investigated in two retrospective cohorts of 365 consecutive CRC patients (cohort 1) and 174 advanced CRC patients with synchronous or metachronous distant metastasis (cohort 2). HER2 status was determined by performing dual-color silver in-situ hybridization (SISH), mRNA in-situ hybridization (ISH), and immunohistochemistry (IHC). The incidence of HER2 protein overexpression (IHC 2+/3+) was approximately 6% (22 of 365 in cohort 1; 10 of 174 in cohort 2). HER2 gene amplification was observed in 5.8% of the patients from cohort 1 and 6.3% of the patients from cohort 2. HER2 gene amplification was more frequently observed in CRCs located in the rectum than in the right and left colon (P = 0.013 in cohort 1; P = 0.009 in cohort 2). HER2 status, determined by IHC, ISH, and dual-color SISH, was not significantly associated with aggressive CRC behaviour or patients' prognosis in both the cohorts. Of the combined cohort with a total of 539 cases, the concordance rate was 95.5% between dual-color SISH and IHC detection methods. On excluding equivocally immunostained cases (IHC 2+), the concordance rate was 97.7%. HER2 mRNA overtranscription, detected by ISH, significantly correlated with protein overexpression and gene amplification (P<0.001). HER2 gene amplification was identified in a minority of CRC patients with high concordance rates between dual-color SISH and IHC detection methods. Although HER2 status did not predict patients' prognosis, our findings may serve as a basis for future studies on patient selection for HER2 targeted therapy.
Chinese Journal of Pathology
Shafei W, Yuanyuan L, Ying J, Yufeng L, Quancai C, Zhiyong L, Xuan Z.
PMID: - | DOI: -
Objective:
To investigate in situ mRNA expression of HER 2 oncogene in breast cancers with equivocal immunohistochemical results , and to explore the potential feasibility of RNAscope technique in evaluating HER2 status in breast cancers .Methods Sixty-nine FFPE samples of invasive ductal breast cancer with equivocal HER 2 immunohistochemistry results ( IHC 2+) were collected from surgical excisions from Peking Union Medical College Hospital between June 2010 and June 2013.HER2 status and in situ mRNA expression were tested by fluorescence in situ hybridization ( FISH) and RNAscope respectively using tissue microarray constructed from tumor paraffin blocks .The results of HER2 mRNA expression were scored 0 to 4 ( from low to high levels ) according to mRNA expression in 100 cancer cells .HER2 mRNA expression was evaluated in two groups of patients , with positive and negative FISH results .Results Twenty-three of the 69 samples were FISH positive, including 16 samples that were scored 4 by RNAscope (70%,16/23), 6 samples were scored 3 ( 26%,6/23 ) and one sample was scored 2 ( 4%,1/23 ) .High in situ mRNA expression (score 4 or 3) were observed in 96%of HER2 FISH positive samples.All of samples that were scored 4 by RNAscope were FISH positive .Forty-six samples were FISH negative , including 17 samples that were scored 3 by RNAscope (37%,17/46), 25 samples were scored 2 (54%,25/46), and 4 samples were scored 1 (9%,4/46).Conclusions Breast cancer with HER2 IHC 2 +could be further classified according to in situ mRNA expression status .Among them, RNAscope score of 4 could be one of the interpretation criteria for re-testing IHC 2+samples.In situ detection of HER2 mRNA may be an additional candidate method of confirmation for HER 2 gene amplification or protein overexpression , and has potential clinical utility.
Pillai SG, Zhu P, Siddappa CM, Adams DL, Li S, Makarova OV, Amstutz P, Nunley R, Tang CM, Watson MA, Aft RL.
PMID: 28129357 | DOI: 10.1371/journal.pone.0170761
Abstract
PURPOSE:
Molecular characterization of disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer (BC) patients has been hindered by their rarity. To enrich for these cells using an antigen-independent methodology, we have evaluated a size-based microfiltration device in combination with several downstream biomarker assays.
METHODS:
BM aspirates were collected from healthy volunteers or BC patients. Healthy BM was mixed with a specified number of BC cells to calculate recovery and fold enrichment by microfiltration. Specimens were pre-filtered using a 70 μm mesh sieve and the effluent filtered through CellSieve microfilters. Captured cells were analyzed by immunocytochemistry (ICC), FISH for HER-2/neu gene amplification status, and RNA in situ hybridization (RISH). Cells eluted from the filter were used for RNA isolation and subsequent qRT-PCR analysis for DTC biomarker gene expression.
RESULTS:
Filtering an average of 14×106 nucleated BM cells yielded approximately 17-21×103 residual BM cells. In the BC cell spiking experiments, an average of 87% (range 84-92%) of tumor cells were recovered with approximately 170- to 400-fold enrichment. Captured BC cells from patients co-stained for cytokeratin and EpCAM, but not CD45 by ICC. RNA yields from 4 ml of patient BM after filtration averaged 135ng per 10 million BM cells filtered with an average RNA Integrity Number (RIN) of 5.3. DTC-associated gene expression was detected by both qRT-PCR and RISH in filtered spiked or BC patient specimens but, not in control filtered normal BM.
CONCLUSIONS:
We have tested a microfiltration technique for enrichment of BM DTCs. DTC capture efficiency was shown to range from 84.3% to 92.1% with up to 400-fold enrichment using model BC cell lines. In patients, recovered DTCs can be identified and distinguished from normal BM cells using multiple antibody-, DNA-, and RNA-based biomarker assays.
New Biotechnology, 29(6), 665–681.
Portier BP, Gruver AM, Huba MA, Minca EC, Cheah AL, Wang Z, Tubbs RR (2012).
PMID: 22504737 | DOI: 10.1016/j.nbt.2012.03.011.
Diagnostics in the field of breast carcinoma are constantly evolving. The recent wave of molecular methodologies, both microscope and non-microscope based, have opened new ways to gain insight into this disease process and have moved clinical diagnostics closer to a 'personalized medicine' approach. In this review we highlight some of the advancements that laboratory medicine technology is making toward guiding the diagnosis, prognosis, and therapy selection for patients affected by breast carcinoma. The content of the article is largely structured by methodology, with a distinct emphasis on both microscope based and non-microscope based diagnostic formats. Where possible, we have attempted to emphasize the potential benefits as well as limitations to each of these technologies. Successful molecular diagnostics, applied in concert within the morphologic context of a patient's tumor, are what will lay the foundation for personalized therapy and allow a more sophisticated approach to clinical trial stratification. The future of breast cancer diagnostics looks challenging, but it is also a field of great opportunity. Never before have there been such a plethora of new tools available for disease investigation or candidate therapy selection.