Wei, JR;Hao, ZZ;Xu, C;Huang, M;Tang, L;Xu, N;Liu, R;Shen, Y;Teichmann, SA;Miao, Z;Liu, S;
PMID: 36371428 | DOI: 10.1038/s41467-022-34590-1
The primate neocortex exerts high cognitive ability and strong information processing capacity. Here, we establish a single-cell RNA sequencing dataset of 133,454 macaque visual cortical cells. It covers major cortical cell classes including 25 excitatory neuron types, 37 inhibitory neuron types and all glial cell types. We identified layer-specific markers including HPCAL1 and NXPH4, and also identified two cell types, an NPY-expressing excitatory neuron type that expresses the dopamine receptor D3 gene; and a primate specific activity-dependent OSTN + sensory neuron type. Comparisons of our dataset with humans and mice show that the gene expression profiles differ between species in relation to genes that are implicated in the synaptic plasticity and neuromodulation of excitatory neurons. The comparisons also revealed that glutamatergic neurons may be more diverse across species than GABAergic neurons and non-neuronal cells. These findings pave the way for understanding how the primary cortex fulfills the high-cognitive functions.
Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin
Kameneva, P;Artemov, AV;Kastriti, ME;Faure, L;Olsen, TK;Otte, J;Erickson, A;Semsch, B;Andersson, ER;Ratz, M;Frisén, J;Tischler, AS;de Krijger, RR;Bouderlique, T;Akkuratova, N;Vorontsova, M;Gusev, O;Fried, K;Sundström, E;Mei, S;Kogner, P;Baryawno, N;Kharchenko, PV;Adameyko, I;
PMID: 33833454 | DOI: 10.1038/s41588-021-00818-x
Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.
Zhao, Q;Yu, CD;Wang, R;Xu, QJ;Dai Pra, R;Zhang, L;Chang, RB;
PMID: 35296859 | DOI: 10.3760/cma.j.cn112151-20210719-00516
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma
Jansky, S;Sharma, AK;Körber, V;Quintero, A;Toprak, UH;Wecht, EM;Gartlgruber, M;Greco, A;Chomsky, E;Grünewald, TGP;Henrich, KO;Tanay, A;Herrmann, C;Höfer, T;Westermann, F;
PMID: 33767450 | DOI: 10.1038/s41588-021-00806-1
Neuroblastoma is a pediatric tumor of the developing sympathetic nervous system. However, the cellular origin of neuroblastoma has yet to be defined. Here we studied the single-cell transcriptomes of neuroblastomas and normal human developing adrenal glands at various stages of embryonic and fetal development. We defined normal differentiation trajectories from Schwann cell precursors over intermediate states to neuroblasts or chromaffin cells and showed that neuroblastomas transcriptionally resemble normal fetal adrenal neuroblasts. Importantly, neuroblastomas with varying clinical phenotypes matched different temporal states along normal neuroblast differentiation trajectories, with the degree of differentiation corresponding to clinical prognosis. Our work highlights the roles of oncogenic MYCN and loss of TFAP2B in blocking differentiation and may provide the basis for designing therapeutic interventions to overcome differentiation blocks.
Lie, E;Yeo, Y;Lee, EJ;Shin, W;Kim, K;Han, KA;Yang, E;Choi, TY;Bae, M;Lee, S;Um, SM;Choi, SY;Kim, H;Ko, J;Kim, E;
PMID: 34588597 | DOI: 10.1038/s42003-021-02656-3
Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).