Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (53)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • (-) Remove PECAM1 filter PECAM1 (32)
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (10) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (5) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (4) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope (1) Apply RNAscope filter

Research area

  • Cancer (23) Apply Cancer filter
  • HPV (15) Apply HPV filter
  • Infectious Disease (12) Apply Infectious Disease filter
  • Neuroscience (12) Apply Neuroscience filter
  • Other (6) Apply Other filter
  • Development (3) Apply Development filter
  • Immunotherapy (3) Apply Immunotherapy filter
  • Inflammation (3) Apply Inflammation filter
  • Stem Cells (2) Apply Stem Cells filter
  • Cell Biology (1) Apply Cell Biology filter
  • CGT (1) Apply CGT filter
  • Covid (1) Apply Covid filter
  • diabetes (1) Apply diabetes filter
  • Liver (1) Apply Liver filter
  • Molecular Biology (1) Apply Molecular Biology filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Hypertension (1) Apply Other: Hypertension filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Lung Disease (1) Apply Other: Lung Disease filter
  • Others: Methods (1) Apply Others: Methods filter
  • Sequencing (1) Apply Sequencing filter
  • Single Cell (1) Apply Single Cell filter

Category

  • Publications (53) Apply Publications filter
Measurement of plasma cell-free mitochondrial tumor DNA improves detection of glioblastoma in patient-derived orthotopic xenograft models.

Cancer Res.

2018 Nov 02

Mair R, Mouliere F, Smith CG, Chandrananda D, Gale D, Marass F, Tsui DWY, Massie CE, Wright AJ, Watts C, Rosenfeld N, Brindle KM.
PMID: 30389699 | DOI: 10.1158/0008-5472.CAN-18-0074

The factors responsible for the low detection rate of cell-free tumor DNA (ctDNA) in the plasma of glioblastoma (GB) patients are currently unknown. In this study, we measured circulating nucleic acids in patient-derived orthotopically implanted xenograft (PDOX) models of GB (n=64) and show that tumor size and cell proliferation, but not the integrity of the blood-brain barrier or cell death, affect the release of ctDNA in treatment naïve GB PDOX. Analysis of fragment length profiles by shallow genome-wide sequencing (<0.2x coverage) of host (rat) and tumor (human) circulating DNA identified a peak at 145 bp in the human DNA fragments, indicating a difference in the origin or processing of the ctDNA. The concentration of ctDNA correlated with cell death only after treatment with Temozolomide and radiotherapy. Digital PCR detection of plasma tumor mitochondrial DNA (tmtDNA), an alternative to detection of nuclear ctDNA, improved plasma DNA detection rate (82% versus 24%) and allowed detection in cerebrospinal fluid (CSF) and urine. Mitochondrial mutations are prevalent across all cancers and can be detected with high sensitivity, at low cost and without prior knowledge of tumor mutations via capture-panel sequencing. Coupled with the observation that mitochondrial copy number increases in glioma, these data suggest analyzing tmtDNA as a more sensitive method to detect and monitor tumor burden in cancer, specifically in GB where current methods have largely failed.

Therapeutic efficacy of a VSV-GP-based human papilloma virus vaccine in a murine cancer model

Journal of molecular biology

2023 Apr 20

Riepler, L;Frommelt, LS;Wilmschen-Tober, S;Mbuya, W;Held, K;Volland, A;von Laer, D;Geldmacher, C;Kimpel, J;
PMID: 37086948 | DOI: 10.1016/j.jmb.2023.168096

Human papilloma virus (HPV) infections are associated with almost all cervical cancers and to a lower extend also with anogenital or oropharyngeal cancers. HPV proteins expressed in HPV-associated tumors are attractive antigens for cancer vaccination strategies as self-tolerance, which is associated with most endogenous tumor-associated antigens, does not need to be overcome. In this study, we generated a live attenuated cancer vaccine based on the chimeric vesicular stomatitis virus VSV-GP, which has previously proven to be a potent vaccine vector and oncolytic virus. Genes at an earlier position in the genome more to the 3' end are expressed stronger compared to genes located further downstream. By inserting an HPV16-derived antigen cassette consisting of E2, E6 and E7 into VSV-GP either at first (HPVp1) or fifth (HPVp5) position in VSV-GP's genome we aimed to analyze the effect of vaccine antigen position and consequently expression level on viral fitness, immunogenicity, and anti-tumoral efficacy in a syngeneic mouse tumor model. HPVp1 expressed higher amounts of HPV antigens compared to HPVp5 in vitro but had a slightly delayed replication kinetic which overall translated into increased HPV-specific T cell responses upon vaccination of mice. Immunization with both vectors protected mice in prophylactic and in therapeutic TC-1 tumor models with HPVp1 being more effective in the prophylactic setting. Taken together, VSV-GP is a promising candidate as therapeutic HPV vaccine and first position of the vaccine antigen in a VSV-derived vector seems to be superior to fifth position.
Detection of HPV infection in urothelial carcinoma using RNAscope: Clinicopathological characterization

Cancer medicine

2021 Jun 23

Musangile, FY;Matsuzaki, I;Okodo, M;Shirasaki, A;Mikasa, Y;Iwamoto, R;Takahashi, Y;Kojima, F;Murata, SI;
PMID: 34164940 | DOI: 10.1002/cam4.4091

Human papillomavirus (HPV) is a well-established mucosotropic carcinogen, but its impact on urothelial neoplasm is unclear. We aimed to clarify the clinical and pathological features of HPV-related urothelial carcinoma (UC).Tissue samples of 228 cases of UC were obtained from the bladder, upper and lower urinary tract, and metastatic sites to construct a tissue microarray. The samples were analyzed for the presence of HPV by a highly sensitive and specific mRNA in situ hybridization (RISH) technique (RNAscope) with a probe that can detect 18 varieties of high-risk HPV. We also conducted immunohistochemistry (IHC) for a major HPV capsid antibody and DNA-PCR.The HPV detection rates varied among the methods; probably due to low HPV copy numbers in UC tissues and the insufficient specificity and sensitivity of the IHC and PCR assays. The RISH method had the highest accuracy and identified HPV infection in 12 (5.2%) of the cases. The histopathological analysis of the HPV-positive UC showed six cases of usual type UC, five cases of UC with squamous differentiation (UC_SqD), and one case of micropapillary UC. The HPV detection rate was six-fold higher in the cases of UC_SqD than in the other variants of UC (odds ratio [OR] =8.9, p = 0.002). In addition, HPV infection showed a significant association with tumor grade (OR =9.8, p = 0.03) and stage (OR =4.7, p = 0.03) of UC. Moreover, the metastatic rate was higher in HPV-positive than in negative UC (OR =3.4).These data indicate that although the incidence of HPV infection in UC is low, it is significantly associated with squamous differentiation and poor prognosis. Furthermore, our observations show that RNAscope is an ideal method for HPV detection in UC compared with the other standard approaches such as IHC and PCR assays.
High-throughput single-molecule RNA imaging analysis reveals heterogeneous responses of cardiomyocytes to hemodynamic overload.

J Mol Cell Cardiol. 2019 Jan 3.

2019 Jan 03

Satoh M, Nomura S, Harada M, Yamaguchi T, Ko T, Sumida T, Toko H, Naito AT, Takeda N, Tobita T, Fujita T, Ito M, Fujita K, Ishizuka M, Kariya T, Akazawa H, Kobayashi Y, Morita H, Takimoto E, Aburatani H, Komuro I.
PMID: 30611794 | DOI: 10.1016/j.yjmcc.2018.12.018

Abstract BACKGROUND: The heart responds to hemodynamic overload through cardiac hypertrophy and activation of the fetal gene program. However, these changes have not been thoroughly examined in individual cardiomyocytes, and the relation between cardiomyocyte size and fetal gene expression remains elusive. We established a method of high-throughput single-molecule RNA imaging analysis of in vivo cardiomyocytes and determined spatial and temporal changes during the development of heart failure. METHODS AND RESULTS: We applied three novel single-cell analysis methods, namely, single-cell quantitative PCR (sc-qPCR), single-cell RNA sequencing (scRNA-seq), and single-molecule fluorescence in situ hybridization (smFISH). Isolated cardiomyocytes and cross sections from pressure overloaded murine hearts after transverse aortic constriction (TAC) were analyzed at an early hypertrophy stage (2 weeks, TAC2W) and at a late heart failure stage (8 weeks, TAC8W). Expression of myosin heavy chain β (Myh7), a representative fetal gene, was induced in some cardiomyocytes in TAC2W hearts and in more cardiomyocytes in TAC8W hearts. Expression levels of Myh7 varied considerably among cardiomyocytes. Myh7-expressing cardiomyocytes were significantly more abundant in the middle layer, compared with the inner or outer layers of TAC2W hearts, while such spatial differences were not observed in TAC8W hearts. Expression levels of Myh7 were inversely correlated with cardiomyocyte size and expression levels of mitochondria-related genes. CONCLUSIONS: We developed a new image-analysis pipeline to allow automated and unbiased quantification of gene expression at the single-cell level and determined the spatial and temporal regulation of heterogenous Myh7 expression in cardiomyocytes after pressure overload.
CCR2 monocytes repair cerebrovascular damage caused by chronic social defeat stress

Brain, behavior, and immunity

2022 Jan 18

Lehmann, ML;Samuels, JD;Kigar, SL;Poffenberger, CN;Lotstein, ML;Herkenham, M;
PMID: 35063606 | DOI: 10.1016/j.bbi.2022.01.011

Immune surveillance of the brain plays an important role in health and disease. Peripheral leukocytes patrol blood-brain barrier interfaces, and after injury, monocytes cross the cerebrovasculature and follow a pattern of pro- and anti-inflammatory activity leading to tissue repair. We have shown that chronic social defeat (CSD) causes scattered vasculature disruptions. Here, we assessed CCR2+ monocyte trafficking to the vascular injury sites in Ccr2wt/rfp reporter mice both during CSD and one week following CSD cessation. We found that CSD for 14 days induced microhemorrhages where plasma fibrinogen leaked into perivascular spaces, but it did not affect the distribution or density of CCR2rfp+ monocytes in the brain. However, after recovery from CSD, many vascularly adhered CCR2+ cells were detected, and gene expression of the CCR2 chemokine receptor ligands CCL7 and CCL12, but not CCL2, was elevated in endothelial cells. Adhered CCR2+ cells were mostly the non-classical, anti-inflammatory Ly6Clo type, and they phagocytosed fibrinogen in perivascular spaces. In CCR2-deficient Ccr2rfp/rfp mice, fibrinogen levels remained elevated in recovery. Fibrinogen infused intracerebroventricularly induced CCR2+ cells to adhere to the vasculature and phagocytose perivascular fibrinogen in Ccr2wt/rfp but not Ccr2rfp/rfp mice. Depletion of monocytes with clodronate liposomes during CSD recovery prevented fibrinogen clearance and blocked behavioral recovery. We hypothesize that peripheral CCR2+ monocytes are not elevated in the brain on day 14 at the end of CSD and do not contribute to its behavioral effects at that time, but in recovery following cessation of stress, they enter the brain and exert restorative functions mediating vascular repair and normalization of behavior.
Connexin 30 is expressed in a subtype of mouse brain pericytes.

Brain Struct Funct.

2017 Nov 16

Mazaré N, Gilbert A, Boulay AC, Rouach N, Cohen-Salmon M.
PMID: 29143947 | DOI: 10.1007/s00429-017-1562-4

Pericytes are mural cells of blood microvessels which play a crucial role at the neurovascular interface of the central nervous system. They are involved in the regulation of blood-brain barrier integrity, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, and neuroinflammation, and they demonstrate stem cell activity. Morphological and molecular studies to characterize brain pericytes recently pointed out some heterogeneity in pericyte population. Nevertheless, a clear definition of pericyte subtypes is still lacking. Here, we demonstrate that a fraction of brain pericytes express Connexin 30 (Cx30), a gap junction protein, which, in the brain parenchyma, was thought to be exclusively found in astrocytes. Cx30 could thus be a candidate protein in the composition of the gap junction channels already described between endothelial cells and pericytes. It could also form hemichannels or acts in a channel-independent manner to regulate pericyte morphology, as already observed in astrocytes. Altogether, our results suggest that Cx30 defines a novel brain pericyte subtype.

SOX10 Immunoexpression in Basaloid Squamous Cell Carcinomas: A Diagnostic Pitfall for Ruling out Salivary Differentiation.

Head Neck Pathol. 2018 Nov 29.

2018 Nov 29

Rooper LM, McCuiston AM, Westra WH, Bishop JA.
PMID: 30498968 | DOI: 10.1007/s12105-018-0990-7

SOX10 immunoexpression is increasingly recognized in salivary gland tumors, including but not limited to those with myoepithelial, serous acinar, and intercalated duct differentiation. However, SOX10 expression has not been extensively evaluated in other epithelial tumors that can mimic salivary origin. Basaloid squamous cell carcinoma (SCC) is a unique variant of SCC that shows morphologic overlap with several salivary tumors, including adenoid cystic carcinoma, basal cell adenocarcinoma, and myoepithelial carcinoma. We performed SOX10 immunohistochemistry on 22 basaloid SCCs and 280 non-basaloid SCCs. If tissue was available, we also performed immunohistochemistry for S100 and p16, and in-situ hybridization for high-risk HPV RNA. SOX10 was positive in 13/22 basaloid SCCs (59%), including 5/6 (83%) that were HPV-positive and 6/12 (50%) that were HPV-negative. Only 2/12 basaloid SCC (17%) demonstrated focal S100 expression. All non-basaloid SCCs were SOX10 negative. Frequent positivity for SOX10 in basaloid SCC presents a significant diagnostic pitfall for distinguishing these tumors from various basaloid salivary carcinomas. The preponderance of SOX10 expression in the basaloid variant of HPV-positive SCC also presents a diagnostic challenge in separating it from HPV-related multiphenotypic sinonasal carcinoma. SOX10 may be more broadly considered a marker of basal differentiation and should not be assumed to be specific for salivary origin in epithelial head and neck tumors.
Protocol for RNA fluorescence in situ hybridization in mouse meningeal whole mounts

STAR protocols

2022 Jun 17

Nilsson, OR;Kari, L;Rosenke, R;Steele-Mortimer, O;
PMID: 35345596 | DOI: 10.1016/j.xpro.2022.101256

The multilayered meninges surrounding the brain and spinal cord harbor distinct immune cell populations with prominent roles in health and diseases. Here we present an optimized protocol for RNA fluorescence in situ hybridization (RNA FISH) in meningeal whole mounts, allowing the visualization of gene expression. We also describe the combination of this protocol with immunohistochemistry for simultaneous visualization of mRNA and proteins. This protocol can be used for assessing spatial gene expression within the meninges.
MAML2 Rearrangements in Variant Forms of Mucoepidermoid Carcinoma

Am J Surg Pathol.

2018 Jan 01

Bishop JA, Cowan ML, Shum CH, Westra WH.
PMID: 28877061 | DOI: 10.1097/PAS.0000000000000932

Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. Recent studies have shown that most MECs harbor gene fusions involving MAML2-an alteration that appears to be specific for MEC, a finding that could be diagnostically useful. While most cases of MEC are histologically straightforward, uncommon variants can cause considerable diagnostic difficulty. We present 2 variants of MEC for which MAML2 studies were crucial in establishing a diagnosis: a previously undescribed ciliated variant, and the recently described Warthin-like variant. All cases of ciliated and Warthin-like MEC were retrieved from the archives of The Johns Hopkins Hospital. Break-apart fluorescence in situ hybridization for MAML2 was performed on all cases. One ciliated MEC and 6 Warthin-like MECs were identified. The ciliated MEC presented as a 4.6 cm cystic lymph node metastasis originating from the tongue base in a 47-year-old woman. The Warthin-like MECs presented as parotid masses ranging in size from 1.2 to 3.3 (mean, 2.7 cm) in 4 women and 2 men. The ciliated MEC consisted of macrocystic spaces punctuated by tubulopapillary proliferations of squamoid cells and ciliated columnar cells. The Warthin-like MECs were comprised of cystic spaces lined by multilayered oncocytic to squamoid cells surrounded by a circumscribed cuff of lymphoid tissue with germinal centers. In these cases, the Warthin-like areas dominated the histologic picture. Conventional MEC, when present, represented a minor tumor component. MAML2 rearrangements were identified in all cases. Warthin-like MEC, and now a ciliated form of MEC, are newly described variants of a common salivary gland carcinoma. Unfamiliarity with these novel forms, unanticipated cellular features (eg, cilia), and morphologic overlap with mundane benign processes (eg, developmental ciliated cysts, Warthin tumor) or other carcinomas (eg, ciliated human papillomavirus-related carcinoma) may render these variants susceptible to misdiagnosis. These unusual variants appear to consistently harbor MAML2 fusions-a finding that establishes a clear link to conventional MEC and provides a valuable adjunct in establishing the diagnosis.

Human papillomavirus exposure and sexual behavior are significant risk factors for Barrett's dysplasia/esophageal adenocarcinoma.

Dis Esophagus.

2018 Jun 21

Wong MYW, Wang B, Yang A, Khor A, Xuan W, Rajendra S.
PMID: 29931323 | DOI: 10.1093/dote/doy051

Given the comparable strains of high-risk human papillomavirus (HPV) present in a subset of Barrett's dysplasia and esophageal adenocarcinoma as in head and neck squamous cell carcinomas and the anatomical proximity of both lesions, we hypothesized that oral sex may increase the risk of Barrett's dysplasia/esophageal adenocarcinoma. Therefore, we compared the sexual behavior of patients with Barrett's dysplasia/esophageal adenocarcinoma and controls (hospital, reflux, and Barrett's metaplasia) to explore a plausible mechanism of viral transmission to the lower esophagus. A hospital-based case-control study involving 36 Barrett's dysplasia/esophageal adenocarcinoma subjects and 55 controls with known HPV DNA status and markers of transcriptional activity i.e p16INK4A and E6/E7 mRNA of the esophageal epithelium was conducted to evaluate differences in sexual history (if any). Barrett's dysplasia/esophageal adenocarcinoma patients were more likely than controls to be positive for HPV DNA (18 of 36, 50% vs. 6/55, 11%, p for trend <0.0001), be male (P = 0.001) and in a relationship (P = 0.02). Viral genotypes identified were HPV 16 (n = 14), 18 (n = 2), 11 (n = 1) and 6 (n = 1). HPV exposure conferred a significantly higher risk for Barrett's dysplasia/esophageal adenocarcinoma as compared with hospital/reflux/Barrett's metaplasia controls (OR = 6.8, 95% CI: 2.1-23.1, adjusted P = 0.002). On univariate analysis, ≥6 lifetime oral sex partners were significantly associated with dysplastic Barrett's esophagus and adenocarcinoma (OR, 4.0; 95% CI: 1.2-13.7, P = 0.046). After adjustment for confounders, HPV exposure and men with ≥2 lifetime sexual partners were at significant risk for Barrett's dysplasia/esophageal adenocarcinoma. If these initial findings can be confirmed in larger studies, it could lead to effective prevention strategies in combating some of the exponential increase in the incidence of esophageal adenocarcinoma in the West.

Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver

Nature (2015)

Wang B, Zhao L, Fish M, Logan CY, Nusse R.
PMID: 26245375 | DOI: 10.1038/nature14863

The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2 in mice, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thereby differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes, and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity.
Automated RNA In Situ Hybridization for 18 High Risk Human Papilloma Viruses in Squamous Cell Carcinoma of the Head and Neck: Comparison With p16 Immunohistochemistry.

Appl Immunohistochem Mol Morphol.

2017 Aug 02

Drumheller B, Cohen C, Lawson D, Siddiqui MT.
PMID: 28777152 | DOI: 10.1097/PAI.0000000000000550

Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein. A direct clinical comparison between p16 IHC and an automated RNA ISH using 18 probes has not been established. Samples from 27 formalin-fixed, paraffin-embedded HNSCC cases from the Emory University Hospital archives were stained using 18 individual RNA ISH probes for high-risk HPV (RNAscope 2.5 LS Probe ) on a Leica autostainer (Buffalo Grove, IL) and were compared with p16 IHC. Two pathologists reviewed and reached a consensus on all interpretations. The RNAscope technique was positive in 89% (24/27) and the p16 IHC was positive in 78% (21/27). The RNAscope was negative in 11.1% of samples (3/27) and the p16 IHC-negative in 22.2% (6/27). The RNA ISH detected 100% of the p16-positive IHC-stained slides and had a concordance of 88.9% (24/27). This easy to interpret automated staining method for 18 high-risk HPV genotypes is a feasible replacement for the indirect p16 IHC method.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?