Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (10)
  • Image gallery (0)
Refine Probe List

Content for comparison

RNAscope™ HiPlex CS Probe - Hs-ELDR-T2

Gene

  • HPV E6/E7 (68) Apply HPV E6/E7 filter
  • HPV (18) Apply HPV filter
  • HPV-HR18 (14) Apply HPV-HR18 filter
  • TBD (12) Apply TBD filter
  • (-) Remove HPV18 filter HPV18 (6)
  • 18 (5) Apply 18 filter
  • 31 (5) Apply 31 filter
  • HPV16 (4) Apply HPV16 filter
  • HPV16/18 (4) Apply HPV16/18 filter
  • MmuPV1 (4) Apply MmuPV1 filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • HPV HR18 (4) Apply HPV HR18 filter
  • (-) Remove HPV E6 / E7 filter HPV E6 / E7 (4)
  • 33 (4) Apply 33 filter
  • 35 (4) Apply 35 filter
  • 39 (4) Apply 39 filter
  • 45 (4) Apply 45 filter
  • 51 (4) Apply 51 filter
  • 52 (4) Apply 52 filter
  • 56 (4) Apply 56 filter
  • 58 (4) Apply 58 filter
  • 59 (4) Apply 59 filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • E7 (3) Apply E7 filter
  • 26 (3) Apply 26 filter
  • E6/E7 (3) Apply E6/E7 filter
  • HPV 16 (3) Apply HPV 16 filter
  • 53 (3) Apply 53 filter
  • 66 (3) Apply 66 filter
  • 68 (3) Apply 68 filter
  • 73 (3) Apply 73 filter
  • 82 (3) Apply 82 filter
  • HPV16 E6/E7 (2) Apply HPV16 E6/E7 filter
  • HPV- E6 / E7 (2) Apply HPV- E6 / E7 filter
  • HR-HPV (2) Apply HR-HPV filter
  • Wnt16 (1) Apply Wnt16 filter
  • Axin2 (1) Apply Axin2 filter
  • EBV (1) Apply EBV filter
  • HPV31 (1) Apply HPV31 filter
  • HPV33 (1) Apply HPV33 filter
  • HPV35 (1) Apply HPV35 filter
  • HPV52 (1) Apply HPV52 filter
  • HPV58 (1) Apply HPV58 filter
  • HPV-HR7 (1) Apply HPV-HR7 filter
  • CPV16-E6/E7 (1) Apply CPV16-E6/E7 filter
  • E6 (1) Apply E6 filter
  • HER2 (1) Apply HER2 filter
  • Cd207 (1) Apply Cd207 filter
  • Krt10 (1) Apply Krt10 filter
  • Fabp5 (1) Apply Fabp5 filter

Product

  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter

Research area

  • (-) Remove HPV filter HPV (10)
  • Cancer (8) Apply Cancer filter
  • Infectious Disease (4) Apply Infectious Disease filter
  • Bone (1) Apply Bone filter
  • Infectious (1) Apply Infectious filter

Category

  • Publications (10) Apply Publications filter
Liprin-α1 Expression in Tumor-Infiltrating Lymphocytes Associates with Improved Survival in Patients with HPV-Positive Oropharyngeal Squamous Cell Carcinoma

Head and neck pathology

2023 Jun 19

Sjöblom, A;Pehkonen, H;Jouhi, L;Monni, O;Randén-Brady, R;Karhemo, PR;Tarkkanen, J;Haglund, C;Mattila, P;Mäkitie, A;Hagström, J;Carpén, T;
PMID: 37335526 | DOI: 10.1007/s12105-023-01565-7

Liprin-α1 is a scaffold protein involved in cell adhesion, motility, and invasion in malignancies. Liprin-α1 inhibits the expression of metastatic suppressor CD82 in cancers such as oral carcinoma, and the expression of these proteins has been known to correlate negatively. The role of these proteins has not been previously studied in human papillomavirus (HPV)-related head and neck cancers. Our aim was to assess the clinical and prognostic role of liprin-α1 and CD82 in HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) in comparison to HPV-negative OPSCC.The data included 139 OPSCC patients treated at the Helsinki University Hospital (HUS) during 2012-2016. Immunohistochemistry was utilized in HPV determination and in biomarker assays. Overall survival (OS) was used in the survival analysis.Stronger expression of liprin-α1 in tumor-infiltrating lymphocytes (TILs) was linked to lower cancer stage (p < 0.001) and HPV positivity (p < 0.001). Additionally, we found an association between elevated expression of liprin-α1 and weak expression of CD82 in tumor cells (p = 0.029). In survival analysis, we found significant correlation between favorable OS and stronger expression of liprin-α1 in TILs among the whole patient cohort (p < 0.001) and among HPV-positive patients (p = 0.042).Increased liprin-α1 expression in the TILs is associated with favorable prognosis in OPSCC, especially among HPV-positive patients.
Genomic Alterations in Human Papillomavirus-Positive and-Negative Conjunctival Squamous Cell Carcinomas

Investigative ophthalmology & visual science

2021 Nov 01

Ramberg, I;Vieira, FG;Toft, PB;von Buchwald, C;Funding, M;Nielsen, FC;Heegaard, S;
PMID: 34779821 | DOI: 10.1167/iovs.62.14.11

The genomic alterations contributing to the pathogenesis of conjunctival squamous cell carcinomas (SCCs) and their precursor lesions are poorly understood and hamper our ability to develop molecular therapies to reduce the recurrence rates and treatment-related morbidities of this disease. We aimed to characterize the somatic DNA alterations in human papillomavirus (HPV)-positive and HPV-negative conjunctival SCC.Patients diagnosed with conjunctival SCC in situ or SCC treated in ocular oncology referral centers in Denmark were included. HPV detection (HPV DNA PCR, p16 immunohistochemistry, and mRNA in situ hybridization) and targeted capture-based next-generation sequencing of 523 genes frequently involved in cancer were performed to describe the mutational profile based on HPV status.Tumor tissue was available in 33 cases (n = 8 conjunctival SCCs in situ, n = 25 conjunctival SCCs), constituting 25 male and 8 female patients. Nine cases were HPV positive. The HPV-positive SCCs in situ and SCCs were characterized by transcriptionally active high-risk HPV (types 16 and 39) within the tumor cells, frequent mutations in PIK3CA (n = 5/9), and wild-type TP53, CDKN2A, and RB1, while the HPV-negative counterparts harbored frequent mutations in TP53 (n = 21/24), CDKN2A (n = 7/24), and RB1 (n = 6/24).Our findings have delineated two potentially distinct distributions of somatic mutations in conjunctival SCC based on HPV status-pointing to different biological mechanisms of carcinogenesis. The present findings support a causal role of HPV in a subset of conjunctival SCC.
Prevalence of HPV infection in head and neck carcinomas shows geographical variability: a comparative study from Brazil and Germany

Virchows Archiv (2015): 1-9.

Hauck F, Oliveira-Silva M, Dreyer JH, Ferreira Perrusi VJ, Arcuri RA, Hassan R, Bonvicino CR, Barros MHM, Niedobitek G.
PMID: 25820374 | DOI: 10.1007/s00428-015-1761-4

Rising prevalence rates of high-risk human papillomaviruses (hrHPV) infection in oropharyngeal carcinoma (up to 80 %) have been reported in North America and Scandinavia. We have analysed 424 German and 163 Brazilian head and neck squamous cell carcinomas (HNSCC) from the oral cavity (OSCC), oropharynx (OPSCC) and hypopharynx (HPSCC) using p16 immunohistochemistry, HPV DNA PCR and sequencing, hrHPV DNA in situ hybridisation (ISH) and hrHPV E6/E7 RNA ISH. In the German series, 52/424 cases (12.3 %) were p16-positive/hrHPV-positive (OSCC 3.8 % [10/265], OPSCC 34.4 % [42/122], HPSCC 0 % [0/37]). In addition, there were 9 cases that were p16-positive/hrHPV-negative (5 OPSCC and 4 OSCC). In the Brazilian series, the overall hrHPV DNA prevalence by PCR was 11.0 % ([18/163]; OSCC 6 % [5/83], OPSCC 15.5 % [11/71], HPSCC 22.2 % [2/9]). Ten of these cases were hrHPV-positive/p16-positive. The remaining 8 hrHPV-positive/p16-negative cases were also negative in both ISH assays. Furthermore, 5 p16-positive/hrHPV-negative cases (2 OPSCC and 3 OSCC) were identified. In both series, HPV16 was by far the most common HPV type detected. We confirm that regardless of geographical origin, the highest hrHPV prevalence in HNSCC is observed in oropharyngeal carcinomas. The proportion of HPV-associated OPSCC was substantially higher in the German cohort than in the Brazilian series (34.4 vs. 15.5 %), and in both groups, the prevalence of hrHPV in OPSCC was much lower than in recent reports from North America and Scandinavia. We suggest, therefore, that it may be possible to define areas with high (e.g. USA, Canada, Scandinavia), intermediate (e.g. Germany) and low (e.g. Brazil) prevalences of HPV infection in OPSCC.
Amplification of EGFR and cyclin D1 genes associated with human papillomavirus infection in oral squamous cell carcinoma.

Med Oncol.

2017 Jul 24

Chuerduangphui J, Pientong C, Patarapadungkit N, Chotiyano A, Vatanasapt P, Kongyingyoes B, Promthet S, Swangphon P, Bumrungthai S, Pimson C, Ekalaksananan T.
PMID: 28741068 | DOI: 10.1007/s12032-017-1010-6

Human papillomavirus (HPV) infection is associated with several genetic alterations including oncogene amplification, leading to increased aggression of tumors. Recently, a relationship between HPV infection and oncogene amplification has been reported, but this finding remains controversial. This study therefore investigated relationships between HPV infection and amplification of genes in the epidermal growth factor receptor (EGFR) signaling cascade in oral squamous cell carcinoma (OSCC). Extracted DNA from 142 formalin-fixed paraffin-embedded (FFPE) OSCC tissues was performed to investigate the copy number of EGFR, KRAS, c-myc and cyclin D1 genes using real-time polymerase chain reaction (RT-PCR) and compared with calibrators. A tissue microarray of OSCC tissues was used for detection of c-Myc expression and HPV infection by immunohistochemistry and HPV E6/E7 RNA in situ hybridization, respectively. HPV infection was also investigated using PCR and RT-PCR. Of the 142 OSCC samples, 81 (57%) were HPV-infected cases. The most frequently amplified gene was c-myc (55.6%), followed by cyclin D1 (26.1%), EGFR (23.9%) and KRAS (19.7%). Amplification of c-myc was significantly associated with levels of its protein product. EGFR amplification was also significantly associated with amplification of genes in the signaling cascade: KRAS (50.0%), c-myc (34.2%) and cyclin D1 (46.0%). Interestingly, HPV infection was significantly associated with amplification of both EGFR (76.5%) and cyclin D1 (73.0%). Only cyclin D1 amplification was significantly associated with severity of OSCC histopathology. HPV infection may play an important synergistic role in amplification of genes in the EGFR signaling cascade, leading to increased aggression in oral malignancies.

Usefulness of high-risk human papillomavirus mRNA silver in situ hybridization diagnostic assay in oropharyngeal squamous cell carcinomas

Pathology, research and practice

2021 Aug 14

Gale, N;Poljak, M;Volavšek, M;Hošnjak, L;Velkavrh, D;Bolha, L;Komloš, KF;Strojan, P;Aničin, A;Zidar, N;
PMID: 34455364 | DOI: 10.1016/j.prp.2021.153585

The transcriptional activity of high-risk human papillomaviruses (HR-HPV) within oropharyngeal squamous cell carcinomas (OPSCC) has been linked to improved survival of patients. HR-HPV mRNA silver in situ hybridization (SISH) was evaluated on a cohort of OPSCC and compared with viral HPV DNA tests and p16 expression. Clinical outcomes of HPV-driven OPSCC and non-HPV related OPSCC were also studied.We evaluated 67 OPSCC and 3 papillomas, obtained from 62 patients, for detection of HR-HPV DNA by PCR tests. The positive samples were additionally studied by the SISH method using three probes of HPV16, HPV18, and HP33, and for p16 expression detected by immunohistochemistry. SISH assays were evaluated for the presence/number and intensity of signals in cancer cells. Prognostic significance of HPV status in our cohort was evaluated with univariate and multivariate statistics.According to the HR-HPV PCR tests, 46 (69%) OPSCC cases were HPV positive, while three papillomas were negative. Of total 46 HPV-positive OPSCCs, 43 cases were also SISH-positive, while p16 overexpression was found in 45 of 46 HPV positive OPSCC cases. In OPSCC specimens, the sensitivity and specificity of the combined SISH probes (HPV16 and 33) were both 100.00%, when compared to HPV PCR. HPV positivity of the tumors appeared significant for predicting progression-free survival, cause specific survival and overall survival in a multivariate setting.The recently developed mRNA SISH methodology can detect HPV-driven OPSCCs without any additional test in 79% of cases. Positive SISH signals enable the visualization of viral transcripts required to recognize clinically relevant HPV infection. However, rare and tiny signals require an experienced pathologist to establish a consensus interpretation of results. The currently applied HR-HPV mRNA SISH analysis may serve as a groundwork for additional studies.
High-risk HPV-related squamous cell carcinoma in the temporal bone: a rare but noteworthy subtype

Virchows Archiv : an international journal of pathology

2023 Jan 27

Hongo, T;Yamamoto, H;Kuga, R;Komune, N;Miyazaki, M;Tsuchihashi, NA;Noda, T;Matsumoto, N;Oda, Y;Nakagawa, T;
PMID: 36705751 | DOI: 10.1007/s00428-023-03497-7

High-risk human papillomavirus (HPV) is a risk factor for the development of several head and neck squamous cell carcinomas (SCCs). However, there have been few reports of high-risk HPV infection in temporal bone squamous cell carcinomas (TBSCCs), and thus the prevalence and clinicopathologic significance of high-risk HPV in TBSCCs are still unclear. We retrospectively collected 131 TBSCCs and analyzed them for transcriptionally active high-risk HPV infection using messenger RNA in situ hybridization; we also assessed the utility of p16-immunohistochemistry (IHC) and Rb-IHC to predict HPV infection. Eighteen (13.7%) of the 131 TBSCCs were positive for p16-IHC, and five of them were positive for high-risk HPV infection (the estimated high-risk HPV positivity rate was 3.8% [5/131]). Interestingly, all five HPV-positive patients were male and had TBSCC on the right side. In the p16-IHC+/HPV+ cases (n = 5), the Rb-IHC showed a partial loss pattern (n = 4) or complete loss pattern (n = 1). In contrast, all p16-IHC-negative cases (n = 113) showed an Rb-IHC preserved pattern. The positive predictive value (PPV) of p16-IHC positivity for high-risk HPV infection was low at 27.8%, while the combination of p16-IHC+/Rb-IHC partial loss pattern showed excellent reliability with a PPV of 100%. The prognostic significance of high-risk HPV infection remained unclear. High-risk HPV-related TBSCC is an extremely rare but noteworthy subtype.
Active human papillomavirus involvement in Barrett's dysplasia and oesophageal adenocarcinoma is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway

Int J Cancer.

2017 Jul 19

Rajendra S, Yang T, Xuan W, Sharma P, Pavey D, Soon Lee C, Le S, Collins J, Wang B.
PMID: 28722212 | DOI: 10.1002/ijc.30896

We have previously demonstrated that transcriptionally active high-risk HPV (hr-HPV) is strongly incriminated in Barrett's dysplasia (BD) and oesophageal adenocarcinoma (OAC) using mainly fresh frozen tissue. This study aimed to identify biomarkers of active HPV infection in Barrett's metaplasia, (BM)/BD/OAC by immunohistochemical staining (IHC) of formalin-fixed paraffin embedded (FFPE) tissue for aberrations of p53 and the retinoblastoma (pRb) pathway which are targets for the viral oncoproteins, E6/E7 respectively. Prospectively, BM(n=81)/BD(n=72)/OAC(n=65) FFPE specimens were subjected to IHC staining for pRb, p16INK4A , cyclin D1 , p53 and RNA in-situ hybridization (ISH) for E6/E7 transcripts. HPV DNA was determined via PCR in fresh frozen specimens. Viral load measurement (real-time PCR) and Next Generation Sequencing of TP53 was also performed. Of 218 patients, 56 were HPV DNA positive [HPV16 (n=42), 18 (n=13), 6 (n=1)]. Viral load was low. Transcriptionally active HPV (DNA+ /RNA+ ) was only found in the dysplastic and adenocarcinoma group (n=21). The majority of HPV DNA+ /RNA+ BD/OAC were characterized by p16INK4Ahigh (14/21, 66.7%), pRblow (15/21, 71.4%) and p53low (20/21, 95%) and was significantly different to controls [combination of HPV DNA- /RNA- (n=94) and HPV DNA+ /RNA- cohorts (n=22)]. p53low had the strongest association with DNA+ /RNA+ oesophageal lesions (OR=23.5, 95% CI=2.94-187.8, p=0.0029). Seventeen HPV DNA+ /RNA+BD/OAC identified as p53low, were sequenced and all but one exhibited wild-type status. pRblow /p53low provided the best balance of strength of association (OR=8.0, 95% CI=2.6-25.0, p=0.0003) and sensitivity (71.4%)/specificity (71.6%) for DNA+ /RNA+ BD/OAC. Active HPV involvement in BD/OAC is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway.

Immunotherapy targeting HPV 16/18 generates potent immune responses in HPV-Associated Head and Neck Cancer

Clin Cancer Res. 2018 Sep 21.

2018 Sep 21

Aggarwal C, Cohen RB, Morrow MP, Kraynak KA, Sylvester AJ, Knoblock DM, Bauml J, Weinstein GS, Lin A, Boyer J, Sakata L, Tan S, Anton A, Dickerson K, Mangrolia D, Vang R, Dallas M, Oyola S, Duff S, Esser MT, Kumar R, Weiner DB, Csiki I, Bagarazzi M.
PMID: 30242022 | DOI: 10.1158/1078-0432.CCR-18-1763

Abstract

PURPOSE:

Clinical responses with programmed death (PD-1) receptor directed antibodies occur in about 20% of patients with advanced head and neck squamous cell cancer (HNSCCa). Viral neoantigens, such as the E6/E7 proteins of HPV16/18 are attractive targets for therapeutic immunization, and offer an immune activation strategy that may be complementary to PD-1 inhibition.

EXPERIMENTAL DESIGN:

We report Phase Ib/II safety, tolerability and immunogenicity results of immunotherapy with MEDI0457 (DNA immunotherapy targeting HPV16/18 E6/E7 with IL-12 encoding plasmids) delivered by electroporation with CELLECTRA® constant current device. Twenty-two patients with locally advanced, p16+ HNSCCa received MEDI0457.

RESULTS:

MEDI0457 was associated with mild injection site reactions but no treatment related grade 3-5 adverse events (AEs). Eighteen of 21 evaluable patients showed elevated antigen specific T cell activity by IFNg ELISpot and persistent cellular responses surpassing 100 SFU/106 PBMC were noted out to one year. Induction of HPV-specific CD8+ T cells was observed. MEDI0457 shifted the CD8+/FoxP3+ ratio in 4/5 post-immunotherapy tumor samples and increased the number of perforin+ immune infiltrates in all five patients. One patient developed metastatic disease and was treated with anti-PD-1 therapy with a rapid and durable complete response. Flow cytometric analyses revealed induction of HPV16 specific PD-1+ CD8+ T cells that were not found prior to MEDI0547 (0% vs. 1.8%).

CONCLUSIONS:

These data demonstrate that MEDI0457 can generate durable HPV16/18 antigen-specific peripheral and tumor immune responses. This approach may be used as a complementary strategy to PD-1/PD-L1 inhibition in HPV-associated HNSCCa to improve therapeutic outcomes.

Abnormal p53 Immunohistochemical Patterns Shed Light on the Aggressiveness of Oral Epithelial Dysplasia

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

2023 Mar 09

Novack, R;Zhang, L;Hoang, LN;Kadhim, M;Ng, TL;Poh, CF;Kevin Ko, YC;
PMID: 36906072 | DOI: 10.1016/j.modpat.2023.100153

The diagnosis of oral epithelial dysplasia is based on the degree of architectural and cytologic atypia in the squamous epithelium. The conventional grading system of mild, moderate, and severe dysplasia is considered by many the gold standard in predicting the risk of malignant transformation. Unfortunately, some low-grade lesions, with or without dysplasia, progress to squamous cell carcinoma (SCC) in short periods. As a result, we are proposing a new approach to characterize oral dysplastic lesions that will help identify lesions at high risk for malignant transformation. We included a total of 203 cases of oral epithelial dysplasia, proliferative verrucous leukoplakia, lichenoid, and commonly observed mucosal reactive lesions to evaluate their p53 immunohistochemical (IHC) staining patterns. We identified 4 wild-type patterns, including scattered basal, patchy basal/parabasal, null-like/basal sparing, mid-epithelial/basal sparing, and 3 abnormal p53 patterns, including overexpression basal/parabasal only, overexpression basal/parabasal to diffuse, and null. All cases of lichenoid and reactive lesions exhibited scattered basal or patchy basal/parabasal patterns, whereas human papillomavirus-associated oral epithelial dysplasia demonstrated null-like/basal sparing or mid-epithelial/basal sparing patterns. Of the oral epithelial dysplasia cases, 42.5% (51/120) demonstrated an abnormal p53 IHC pattern. p53 abnormal oral epithelial dysplasia was significantly more likely to progress to invasive SCC when compared with p53 wild-type oral epithelial dysplasia (21.6% vs 0%, P < .0001). Furthermore, p53 abnormal oral epithelial dysplasia was more likely to have dyskeratosis and/or acantholysis (98.0% vs 43.5%, P < .0001). We propose the term p53 abnormal oral epithelial dysplasia to highlight the importance of utilizing p53 IHC stain to recognize lesions that are at high risk of progression to invasive disease, irrespective of the histologic grade, and propose that these lesions should not be graded using the conventional grading system to avoid delayed management.
Sinonasal Adenosquamous Carcinoma- Morphology and Genetic Drivers Including Low- and High-Risk Human Papillomavirus mRNA, DEK::AFF2 Fusion, and MAML2 Rearrangement

Head and neck pathology

2023 Feb 28

Holliday, D;Mehrad, M;Ely, KA;Tong, F;Wang, X;Hang, JF;Kuo, YJ;Velez-Torres, JM;Lott-Limbach, A;Lewis, JS;
PMID: 36849671 | DOI: 10.1007/s12105-023-01538-w

Sinonasal adenosquamous carcinoma is rare, and there are almost no studies detailing morphology or characterizing their genetic driver events. Further, many authors have termed sinonasal tumors with combined squamous carcinoma and glands as mucoepidermoid carcinoma but none have analyzed for the presence of MAML2 rearrangement.Cases from 2014 to 2020 were collected and diagnosed using World Health Organization criteria. They were tested for p16 expression by immunohistochemistry (70% cut-off), DEK::AFF2 fusion by fluorescence in situ hybridization (FISH) and AFF2 immunohistochemistry, MAML2 rearrangement by FISH, and low- and high-risk HPV by RNA ISH and reverse transcription PCR, respectively. Detailed morphology and clinical features were reviewed.There were 7 male (64%) and 4 female (36%) patients with a median age of 69 years, most Caucasian (10 of 11 or 91%). Most had tobacco exposure (8/11, 73%) and most presented with epistaxis, a visible nasal mass, and/or facial pain. Several had a precursor papillomas (3 of 11, 27%). The squamous component had variable keratinization, 5 of 11 (46%) of which would be described as keratinizing, 3 non-keratinizing, and 2 with mixed features. All had gland formation, by definition, and 2 of 11 (18%) had ciliated tumor cells. None of the 11 cases had MAML2 rearrangement and one had DEK::AFF2 fusion with associated positive nuclear AFF2 protein immunostaining. Most were p16 positive (7 of 11, 64%) and all 7 of these were hrHPV positive either by RNA ISH or RT-PCR. Two of the p16-negative tumors were positive for lrHPV by RNA ISH. Treatment included surgery alone (4 of 11, 36%), surgery with adjuvant radiation (5 of 11, 45%), and surgery with radiation and chemotherapy (2 of 11, 18%). Four of 11 patients (36%) suffered disease recurrence, two requiring re-operation and who were disease free at last follow-up, one receiving additional chemotherapy and who was alive with disease. The other elected to undergo palliative therapy and died of disease.Sinonasal adenosquamous carcinoma is a somewhat heterogeneous tumor not infrequently arising ex papilloma and having various drivers including high- and low-risk HPV and rarely DEK::AFF2 fusion. The prognosis appears favorable when proper treatment is possible.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?