The Journal of Molecular Diagnostics, 14(1), 22–29.
Wang, F, Flanagan, J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y. (2012).
PMID: 22166544 | DOI: 10.1016/j.jmoldx.2011.08.002.
In situ analysis of biomarkers is highly desirable in molecular pathology because it allows the examination of biomarker status within the histopathological context of clinical specimens. Immunohistochemistry and DNA in situ hybridization (ISH) are widely used in clinical settings to assess protein and DNA biomarkers, respectively, but clinical use of in situ RNA analysis is rare. This disparity is especially notable when considering the abundance of RNA biomarkers discovered through whole-genome expression profiling. This is largely due to the high degree of technical complexity and insufficient sensitivity and specificity of current RNA ISH techniques. Here, we describe RNAscope, a novel RNA ISH technology with a unique probe design strategy that allows simultaneous signal amplification and background suppression to achieve single-molecule visualization while preserving tissue morphology. RNAscope is compatible with routine formalin-fixed, paraffin-embedded tissue specimens and can use either conventional chromogenic dyes for bright-field microscopy or fluorescent dyes for multiplex analysis. Unlike grind-and-bind RNA analysis methods such as real-time RT-PCR, RNAscope brings the benefits of in situ analysis to RNA biomarkers and may enable rapid development of RNA ISH-based molecular diagnostic assays.
Chuerduangphui J, Pientong C, Patarapadungkit N, Chotiyano A, Vatanasapt P, Kongyingyoes B, Promthet S, Swangphon P, Bumrungthai S, Pimson C, Ekalaksananan T.
PMID: 28741068 | DOI: 10.1007/s12032-017-1010-6
Human papillomavirus (HPV) infection is associated with several genetic alterations including oncogene amplification, leading to increased aggression of tumors. Recently, a relationship between HPV infection and oncogene amplification has been reported, but this finding remains controversial. This study therefore investigated relationships between HPV infection and amplification of genes in the epidermal growth factor receptor (EGFR) signaling cascade in oral squamous cell carcinoma (OSCC). Extracted DNA from 142 formalin-fixed paraffin-embedded (FFPE) OSCC tissues was performed to investigate the copy number of EGFR, KRAS, c-myc and cyclin D1 genes using real-time polymerase chain reaction (RT-PCR) and compared with calibrators. A tissue microarray of OSCC tissues was used for detection of c-Myc expression and HPV infection by immunohistochemistry and HPV E6/E7 RNA in situ hybridization, respectively. HPV infection was also investigated using PCR and RT-PCR. Of the 142 OSCC samples, 81 (57%) were HPV-infected cases. The most frequently amplified gene was c-myc (55.6%), followed by cyclin D1 (26.1%), EGFR (23.9%) and KRAS (19.7%). Amplification of c-myc was significantly associated with levels of its protein product. EGFR amplification was also significantly associated with amplification of genes in the signaling cascade: KRAS (50.0%), c-myc (34.2%) and cyclin D1 (46.0%). Interestingly, HPV infection was significantly associated with amplification of both EGFR (76.5%) and cyclin D1 (73.0%). Only cyclin D1 amplification was significantly associated with severity of OSCC histopathology. HPV infection may play an important synergistic role in amplification of genes in the EGFR signaling cascade, leading to increased aggression in oral malignancies.
Usefulness of high-risk human papillomavirus mRNA silver in situ hybridization diagnostic assay in oropharyngeal squamous cell carcinomas
Pathology, research and practice
Gale, N;Poljak, M;Volavšek, M;Hošnjak, L;Velkavrh, D;Bolha, L;Komloš, KF;Strojan, P;Aničin, A;Zidar, N;
PMID: 34455364 | DOI: 10.1016/j.prp.2021.153585
The transcriptional activity of high-risk human papillomaviruses (HR-HPV) within oropharyngeal squamous cell carcinomas (OPSCC) has been linked to improved survival of patients. HR-HPV mRNA silver in situ hybridization (SISH) was evaluated on a cohort of OPSCC and compared with viral HPV DNA tests and p16 expression. Clinical outcomes of HPV-driven OPSCC and non-HPV related OPSCC were also studied.We evaluated 67 OPSCC and 3 papillomas, obtained from 62 patients, for detection of HR-HPV DNA by PCR tests. The positive samples were additionally studied by the SISH method using three probes of HPV16, HPV18, and HP33, and for p16 expression detected by immunohistochemistry. SISH assays were evaluated for the presence/number and intensity of signals in cancer cells. Prognostic significance of HPV status in our cohort was evaluated with univariate and multivariate statistics.According to the HR-HPV PCR tests, 46 (69%) OPSCC cases were HPV positive, while three papillomas were negative. Of total 46 HPV-positive OPSCCs, 43 cases were also SISH-positive, while p16 overexpression was found in 45 of 46 HPV positive OPSCC cases. In OPSCC specimens, the sensitivity and specificity of the combined SISH probes (HPV16 and 33) were both 100.00%, when compared to HPV PCR. HPV positivity of the tumors appeared significant for predicting progression-free survival, cause specific survival and overall survival in a multivariate setting.The recently developed mRNA SISH methodology can detect HPV-driven OPSCCs without any additional test in 79% of cases. Positive SISH signals enable the visualization of viral transcripts required to recognize clinically relevant HPV infection. However, rare and tiny signals require an experienced pathologist to establish a consensus interpretation of results. The currently applied HR-HPV mRNA SISH analysis may serve as a groundwork for additional studies.
Pillai SG, Zhu P, Siddappa CM, Adams DL, Li S, Makarova OV, Amstutz P, Nunley R, Tang CM, Watson MA, Aft RL.
PMID: 28129357 | DOI: 10.1371/journal.pone.0170761
Abstract
PURPOSE:
Molecular characterization of disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer (BC) patients has been hindered by their rarity. To enrich for these cells using an antigen-independent methodology, we have evaluated a size-based microfiltration device in combination with several downstream biomarker assays.
METHODS:
BM aspirates were collected from healthy volunteers or BC patients. Healthy BM was mixed with a specified number of BC cells to calculate recovery and fold enrichment by microfiltration. Specimens were pre-filtered using a 70 μm mesh sieve and the effluent filtered through CellSieve microfilters. Captured cells were analyzed by immunocytochemistry (ICC), FISH for HER-2/neu gene amplification status, and RNA in situ hybridization (RISH). Cells eluted from the filter were used for RNA isolation and subsequent qRT-PCR analysis for DTC biomarker gene expression.
RESULTS:
Filtering an average of 14×106 nucleated BM cells yielded approximately 17-21×103 residual BM cells. In the BC cell spiking experiments, an average of 87% (range 84-92%) of tumor cells were recovered with approximately 170- to 400-fold enrichment. Captured BC cells from patients co-stained for cytokeratin and EpCAM, but not CD45 by ICC. RNA yields from 4 ml of patient BM after filtration averaged 135ng per 10 million BM cells filtered with an average RNA Integrity Number (RIN) of 5.3. DTC-associated gene expression was detected by both qRT-PCR and RISH in filtered spiked or BC patient specimens but, not in control filtered normal BM.
CONCLUSIONS:
We have tested a microfiltration technique for enrichment of BM DTCs. DTC capture efficiency was shown to range from 84.3% to 92.1% with up to 400-fold enrichment using model BC cell lines. In patients, recovered DTCs can be identified and distinguished from normal BM cells using multiple antibody-, DNA-, and RNA-based biomarker assays.
Abdou, Y;Barton, D;Ronczka, A;Cushing, D;Klichinsky, M;Binder, K;
| DOI: 10.1158/1538-7445.sabcs21-ot1-03-01
Adoptive T cell therapies have led to remarkable advances among patients with hematologic malignancies, but not in those with solid tumors. Macrophages are actively recruited into, and abundantly present in the solid tumor microenvironment (sTME). Tumor- associated macrophages typically evince immunosuppressive behavior, but when engineered to be proinflammatory, may be an ideal vector to administer adoptive cellular therapy in solid tumors. Furthermore, insertion of a CAR on the macrophages confers the ability to selectively recognize and phagocytose antigen overexpressing cancer cells. Additionally, CAR macrophages reprogram the sTME and present neoantigens to T cells, leading to epitope spreading and immune memory. Human Epidermal Growth Factor Receptor 2 (HER2) overexpression promotes tumorigenesis and is seen in many cancers, including but not limited to breast and gastroesophageal cancers (Table 1). CT-0508 is a cell product comprised of autologous monocyte-derived pro-inflammatory macrophages expressing an anti-HER2 CAR. Pre-clinical studies have shown that CT-0508 induced targeted cancer cell phagocytosis while sparing normal cells, decreasing tumor burden and prolonging survival in relevant models. CT-0508 cells were safe and effective in a semi-immunocompetent mouse model of human HER2 overexpressing ovarian cancer. This is a FIH Phase 1 study to evaluate safety, tolerability, cell manufacturing feasibility, trafficking, and preliminary evidence of efficacy of investigational product CT-0508 in approximately 18 subjects with locally advanced (unresectable) or metastatic solid tumors overexpressing HER2, who have failed available therapies including anti-HER2 therapies where indicated.Filgrastim is being used to mobilize autologous hematopoietic progenitor cells for monocyte collection by apheresis. The CT-0508 CAR macrophage product is manufactured, prepared and cryopreserved from mobilized peripheral blood monocytes. The study is enrolling Group 1 subjects, who receive CT-0508 infusion split over D1, 3 and 5. Subjects will be continually assessed for acute and cumulative toxicity. Dose limiting toxicities will be observed and addressed by a Safety Review Committee. Group 2 subjects will follow, and will receive the full CT-0508 infusion on D1. Pre and post treatment biopsies and blood samples will be collected to investigate correlates of safety (immunogenicity), trafficking (PCR, RNA scope), CT-0508 persistence in blood and in the tumor, target antigen engagement, TME modulation (single cell RNA sequencing), immune response (TCR sequencing) and others. Clinical trial registry number: NCT04660929 Table 1.HER2 Positivity Frequencies Across Tumor TypesTumor typeHER2 positivity (%)ReferenceBladder cancer8-70Gandour-Edwards et al, 2002;Caner et al, 2008;Laé et al, 2010; Fleischmann et al, 2011;Charfi et al, 2013;Yan et al, 2015Breast cancer11.0-25.0Varga et al, 2013;Stenehjem et al, 2014Cervical cancer2.8-3.9Chavez-Blanco et al, 2004;Yan et al, 2015Colorectal cancer1.6-5.0Schuell et al, 2006;Ingold Heppner et al, 2014;Seo et al, 2014Esophageal cancer12.0-14.0König et al, 2013;Yoon et al, 2013;Wang et al, 2014Extrahepatic Cholangiocarcinoma6.3-9.0Yoshikawa et al, 2008;Yan et al, 2015Gallbladder cancer9.8-12.8Roa et al, 2014;Yan et al, 2015Gastric adenocarcinoma7.0-34.0Rüschoff et al, 2012;Hofmann et al, 2008Ovarian cancer26Slamon et al, 1989Salivary mucoepidermoid carcinomas17.6Glisson et al, 2004Salivary duct carcinoma30-40Skálová et al, 2003; Cornolti et al, 2007; Nardi et al, 2013Testicular cancer2.4Yan et al, 2015Uterine cancer3.0Yan et al, 2015 Citation Format: Yara George Abdou, Debora Barton, Amy Ronczka, Daniel Cushing, Michael Klichinsky, Kim Reiss Binder. A phase 1, first in human (FIH) study of adenovirally transduced autologous macrophages engineered to contain an anti-HER2 chimeric antigen receptor (CAR) in subjects with HER2 overexpressing solid tumors [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr OT1-03-01.
Abstract CT204: A phase 1, first in human (FIH) study of adenovirally transduced autologous macrophages engineered to contain an anti-HER2 chimeric antigen receptor (CAR) in subjects with HER2 overexpressing solid tumors
Bauml, J;Barton, D;Ronczka, A;Cushing, D;Klichinsky, M;Dees, E;
| DOI: 10.1158/1538-7445.am2021-ct204
Background: Adoptive T cell therapies have led to remarkable advances among patients with hematologic malignancies, but not in those with solid tumors. Macrophages are actively recruited into, and abundantly present in the solid tumor microenvironment (sTME). Tumor- associated macrophages typically evince immunosuppressive behavior, but when engineered to be proinflammatory, may be an ideal vector to administer adoptive cellular therapy in solid tumors. Furthermore, insertion of a CAR confers on the macrophages the ability to selectively recognize and phagocytose antigen overexpressing cancer cells. Additionally, CAR macrophages reprogram the sTME and present neoantigens to T cells, leading to epitope spreading and immune memory. Human Epidermal Growth Factor Receptor 2 (HER2) is overexpressed in many cancers, including but not limited to breast and gastroesophageal cancers. CT-0508 is a cell product comprised of autologous monocyte-derived pro-inflammatory macrophages expressing an anti-HER2 CAR. Pre-clinical studies have shown that CT-0508 induced targeted cancer cell phagocytosis while sparing normal cells, decreased tumor burden and prolonged survival in relevant models. CT-0508 cells were safe in a semi-immunocompetent mouse model of human HER2 overexpressing ovarian cancer. Methods: This is a FIH Phase 1 study to evaluate safety, tolerability, cell manufacturing feasibility, trafficking, and preliminary evidence of efficacy of investigational product CT-0508 in approximately 18 subjects with locally advanced (unresectable) or metastatic solid tumors overexpressing HER2 who have failed available therapies including anti-HER2 therapies when indicated. Filgrastim will be used to mobilize autologous hematopoietic progenitor cells for monocyte collection by apheresis. The CT-0508 CAR macrophage product will be manufactured, prepared and cryopreserved from mobilized peripheral blood monocytes. Group 1 subjects will receive CT-0508 infusion split over D1, 3 and 5. Subjects will be continually assessed for acute and cumulative toxicity. Dose limiting toxicities will be observed and addressed by a Safety Review Committee. Group 2 subjects will receive the full CT-0508 infusion on D1. Pre and post treatment biopsies and blood samples will be collected to investigate correlates of safety (immunogenicity), trafficking (PCR, RNA scope), persistence, target antigen engagement, TME modulation (single cell RNA sequencing), immune response (TCR sequencing) and others.
Rajendra S, Yang T, Xuan W, Sharma P, Pavey D, Soon Lee C, Le S, Collins J, Wang B.
PMID: 28722212 | DOI: 10.1002/ijc.30896
We have previously demonstrated that transcriptionally active high-risk HPV (hr-HPV) is strongly incriminated in Barrett's dysplasia (BD) and oesophageal adenocarcinoma (OAC) using mainly fresh frozen tissue. This study aimed to identify biomarkers of active HPV infection in Barrett's metaplasia, (BM)/BD/OAC by immunohistochemical staining (IHC) of formalin-fixed paraffin embedded (FFPE) tissue for aberrations of p53 and the retinoblastoma (pRb) pathway which are targets for the viral oncoproteins, E6/E7 respectively. Prospectively, BM(n=81)/BD(n=72)/OAC(n=65) FFPE specimens were subjected to IHC staining for pRb, p16INK4A , cyclin D1 , p53 and RNA in-situ hybridization (ISH) for E6/E7 transcripts. HPV DNA was determined via PCR in fresh frozen specimens. Viral load measurement (real-time PCR) and Next Generation Sequencing of TP53 was also performed. Of 218 patients, 56 were HPV DNA positive [HPV16 (n=42), 18 (n=13), 6 (n=1)]. Viral load was low. Transcriptionally active HPV (DNA+ /RNA+ ) was only found in the dysplastic and adenocarcinoma group (n=21). The majority of HPV DNA+ /RNA+ BD/OAC were characterized by p16INK4Ahigh (14/21, 66.7%), pRblow (15/21, 71.4%) and p53low (20/21, 95%) and was significantly different to controls [combination of HPV DNA- /RNA- (n=94) and HPV DNA+ /RNA- cohorts (n=22)]. p53low had the strongest association with DNA+ /RNA+ oesophageal lesions (OR=23.5, 95% CI=2.94-187.8, p=0.0029). Seventeen HPV DNA+ /RNA+BD/OAC identified as p53low, were sequenced and all but one exhibited wild-type status. pRblow /p53low provided the best balance of strength of association (OR=8.0, 95% CI=2.6-25.0, p=0.0003) and sensitivity (71.4%)/specificity (71.6%) for DNA+ /RNA+ BD/OAC. Active HPV involvement in BD/OAC is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway.
Zhonghua Bing Li Xue Za Zhi.
Zhao YH, Liu HG.
PMID: 27646894 | DOI: 10.3760/cma.j.issn.0529-5807.2016.09.010.
OBJECTIVE:
To study the clinicopathologic features, immunophenotype, differential diagnosis and prognosis of non-keratinizing carcinoma of nasal cavity and paranasal sinus.
METHODS:
Four hundred and forty-one cases of squamous cell carcinoma of the nasal cavity and sinuses diagnosed in Beijing Tongren Hospital from January 2008 to August 2015 were included. Twenty-six cases of non-keratinizing carcinomas were selected. The histopathologic features and the clinicopathologic data of these twenty-six cases were retrospectively analyzed. Immunohistochemistry (two-step EnVision method) was done to evaluate the expression of CK, vimentin, CK5/6, CK7, CK8/18, p16, p53, Ki-67 etc. In situ hybridization was used to detect Epstein-Barr virus mRNA(EBER), and flow-through hybridization was used to evaluate the presence of human papilloma virus (HPV). One of the cases which HPV is positive was detected by HPV in situ hybridization and RNAscope technology.
RESULTS:
The mean age for the twenty-six patients (16 males, 10 females) was 51.2 years (range 22 to 79 years). Three patients had a history of inverted papilloma.Microscopically the tumors showed invasive papillary and inverted growth, and formed solid cell nests with different sizes. It was similar to papillary carcinoma of the urinary tract: the nuclei of the tumor were rounded and the nucleolus are clear. Three cases displayed transition between normal epithelium to neoplastic cells; in two cases (2/26), some tumor cells were spindle shaped. Twenty cases (20/20) were strongly positive for CK, p63; 17 cases (17/20) were strongly positive for CK5/6 and three cases (3/20) were focally positive. Sixteen cases were strongly positive for CK8/18 and three cases (3/20) were focally positive and one case was negative. Seven cases (7/20) were strongly positive for CK7 and 13 cases (13/20) were negative. Two cases (2/20) were focally positive for vimentin and eighteen (18/20) cases were negative. One case (1/20) was strongly positive for p16 and nineteen cases (19/20) were negative. Nineteen cases (19/20) were positive for p53 and one case (1/20) was negative. Ki-67 index was >50% in 11 cases. Twenty cases (20/20) were negative for AFP, NUT, S-100 protein, HMB45 and Melan A. One case was positive for HPV (6, 11, 16, 18), as detected by in situ hybridization. The HPV18 mRNA was detected by RNAscope technique. In situ hybridization were negative in all twenty cases. The mean follow-up time of the patients in this group was less than 5 years, and the prognosis needs further observation.
CONCLUSIONS:
Non-keratinizing squamous cell carcinoma is a rare neoplasm with distinct morphological characteristics. Its diagnosis is primarily based on the site of lesions and the histological features.Immunohistochemistry staining can aid the diagnosis and differential diagnoses. The tumor may originate from the epithelium of nasal cavity and sinus. This disease has no relation with HPV and EBV infection, and the treatment is primarily surgical excision combined with postoperative radiotherapy.
PLoS One. 2014 Jun 26;9(6):e99131.
Vassilakopoulou M, Togun T, Dafni U, Cheng H1, Bordeaux J, Neumeister VM, Bobos M, Pentheroudakis G, Skarlos DV, Pectasides D, Kotoula V, Fountzilas G, Rimm DL, Psyrri A.
PMID: 24968015 | DOI: 10.1371/journal.pone.0099131.eCollection2014.
BACKGROUND: We sought to determine the predictive value of in situ mRNA measurement compared to traditional methods on a cohort of trastuzumab-treated metastatic breast cancer patients. METHODS: A tissue microarray composed of 149, classified as HER2-positive, metastatic breast cancers treated with various trastuzumab-containing chemotherapy regimens was constructed. HER2 intracellular domain(ICD), HER2 extracellular domain(ECD) and HER2 mRNA were assessed using AQUA. For HER2 protein evaluation, CB11 was used to measure ICD and SP3 to measure ECD of the HER2 receptor. In addition, HER2 mRNA status was assessed using RNAscope assay ERRB2 probe. Kaplan - Meier estimates were used for depicting time-to-event endpoints. Multivariate Cox regression models with backward elimination were used to assess the performance of markers as predictors of TTP and OS, after adjusting for important covariates. RESULTS: HER2 mRNA was correlated with ICD HER2, as measured by CB11 HER2, with ECD HER2 as measured by SP3 (Pearson's Correlation Coefficient, r = 0.66 and 0.51 respectively) and with FISH HER2 (Spearman's Correlation Coefficient, r = 0.75). All markers, HER2 mRNA, ICD HER2 and ECD HER2, along with FISH HER2, were found prognostic for OS (Log-rank p = 0.007, 0.005, 0.009 and 0.043 respectively), and except for FISH HER2, they were also prognostic for TTP Log-rank p = 0.036, 0.068 and 0.066 respectively) in this trastuzumab- treated cohort. Multivariate analysis showed that in the presence of pre-specified set of prognostic factors, among all biomarkers only ECD HER2, as measured by SP3, is strong prognostic factor for both TTP (HR = 0.54, 95% CI: 0.31-0.93, p = 0.027) and OS (HR = 0.39, 95%CI: 0.22-0.70, p = 0.002). CONCLUSIONS: The expression of HER2 ICD and ECD as well as HER2 mRNA levels was significantly associated with TTP and OS in this trastuzumab-treated metastatic cohort. In situ assessment of HER2 mRNA has the potential to identify breast cancer patients who derive benefit from Trastuzumab treatment.
Clin Cancer Res. 2018 Sep 21.
Aggarwal C, Cohen RB, Morrow MP, Kraynak KA, Sylvester AJ, Knoblock DM, Bauml J, Weinstein GS, Lin A, Boyer J, Sakata L, Tan S, Anton A, Dickerson K, Mangrolia D, Vang R, Dallas M, Oyola S, Duff S, Esser MT, Kumar R, Weiner DB, Csiki I, Bagarazzi M.
PMID: 30242022 | DOI: 10.1158/1078-0432.CCR-18-1763
Abstract
PURPOSE:
Clinical responses with programmed death (PD-1) receptor directed antibodies occur in about 20% of patients with advanced head and neck squamous cell cancer (HNSCCa). Viral neoantigens, such as the E6/E7 proteins of HPV16/18 are attractive targets for therapeutic immunization, and offer an immune activation strategy that may be complementary to PD-1 inhibition.
EXPERIMENTAL DESIGN:
We report Phase Ib/II safety, tolerability and immunogenicity results of immunotherapy with MEDI0457 (DNA immunotherapy targeting HPV16/18 E6/E7 with IL-12 encoding plasmids) delivered by electroporation with CELLECTRA® constant current device. Twenty-two patients with locally advanced, p16+ HNSCCa received MEDI0457.
RESULTS:
MEDI0457 was associated with mild injection site reactions but no treatment related grade 3-5 adverse events (AEs). Eighteen of 21 evaluable patients showed elevated antigen specific T cell activity by IFNg ELISpot and persistent cellular responses surpassing 100 SFU/106 PBMC were noted out to one year. Induction of HPV-specific CD8+ T cells was observed. MEDI0457 shifted the CD8+/FoxP3+ ratio in 4/5 post-immunotherapy tumor samples and increased the number of perforin+ immune infiltrates in all five patients. One patient developed metastatic disease and was treated with anti-PD-1 therapy with a rapid and durable complete response. Flow cytometric analyses revealed induction of HPV16 specific PD-1+ CD8+ T cells that were not found prior to MEDI0547 (0% vs. 1.8%).
CONCLUSIONS:
These data demonstrate that MEDI0457 can generate durable HPV16/18 antigen-specific peripheral and tumor immune responses. This approach may be used as a complementary strategy to PD-1/PD-L1 inhibition in HPV-associated HNSCCa to improve therapeutic outcomes.
New Biotechnology, 29(6), 665–681.
Portier BP, Gruver AM, Huba MA, Minca EC, Cheah AL, Wang Z, Tubbs RR (2012).
PMID: 22504737 | DOI: 10.1016/j.nbt.2012.03.011.
Diagnostics in the field of breast carcinoma are constantly evolving. The recent wave of molecular methodologies, both microscope and non-microscope based, have opened new ways to gain insight into this disease process and have moved clinical diagnostics closer to a 'personalized medicine' approach. In this review we highlight some of the advancements that laboratory medicine technology is making toward guiding the diagnosis, prognosis, and therapy selection for patients affected by breast carcinoma. The content of the article is largely structured by methodology, with a distinct emphasis on both microscope based and non-microscope based diagnostic formats. Where possible, we have attempted to emphasize the potential benefits as well as limitations to each of these technologies. Successful molecular diagnostics, applied in concert within the morphologic context of a patient's tumor, are what will lay the foundation for personalized therapy and allow a more sophisticated approach to clinical trial stratification. The future of breast cancer diagnostics looks challenging, but it is also a field of great opportunity. Never before have there been such a plethora of new tools available for disease investigation or candidate therapy selection.
Am J Clin Pathol. 2018 Oct 18.
Gibbons-Fideler IS, Nitta H, Murillo A, Tozbikian G, Banks P, Parwani AV, Li Z.
PMID: 30339245 | DOI: 10.1093/ajcp/aqy136
OBJECTIVES:
Either immunohistochemistry (IHC) or in situ hybridization (ISH) can be used to determine human epidermal growth factor receptor 2 (HER2) status. Breast cancers (BCs) with HER2 IHC-negative (IHC-) and ISH-amplified (ISH+) results have been rarely reported but not well studied. We investigated the frequency of HER2 IHC-/ISH+ BCs and their response to anti-HER2 neoadjuvant chemotherapy (NAC).
METHODS:
Seventeen BCs with HER2 IHC-/ISH+ results were identified from 1,107 consecutive invasive BCs (1.5%, 17/1,107).
RESULTS:
Gene protein assay confirmed the original HER2 IHC and ISH results. Increased HER2 RNA level was detected in HER2 IHC-/ISH+ cases compared with HER2 IHC-/ISH- cases. Eight patients had anti-HER2 NAC; three had pathologic complete response, and five had residual tumors.
CONCLUSIONS:
A small percentage of patients (1.5%) showed discordant HER2 IHC and ISH results (IHC-/ISH+) and would have lost the opportunity for potentially beneficial anti-HER2-targeted therapy if only HER2 IHC testing had been used."