Usefulness of high-risk human papillomavirus mRNA silver in situ hybridization diagnostic assay in oropharyngeal squamous cell carcinomas
Pathology, research and practice
Gale, N;Poljak, M;Volavšek, M;Hošnjak, L;Velkavrh, D;Bolha, L;Komloš, KF;Strojan, P;Aničin, A;Zidar, N;
PMID: 34455364 | DOI: 10.1016/j.prp.2021.153585
The transcriptional activity of high-risk human papillomaviruses (HR-HPV) within oropharyngeal squamous cell carcinomas (OPSCC) has been linked to improved survival of patients. HR-HPV mRNA silver in situ hybridization (SISH) was evaluated on a cohort of OPSCC and compared with viral HPV DNA tests and p16 expression. Clinical outcomes of HPV-driven OPSCC and non-HPV related OPSCC were also studied.We evaluated 67 OPSCC and 3 papillomas, obtained from 62 patients, for detection of HR-HPV DNA by PCR tests. The positive samples were additionally studied by the SISH method using three probes of HPV16, HPV18, and HP33, and for p16 expression detected by immunohistochemistry. SISH assays were evaluated for the presence/number and intensity of signals in cancer cells. Prognostic significance of HPV status in our cohort was evaluated with univariate and multivariate statistics.According to the HR-HPV PCR tests, 46 (69%) OPSCC cases were HPV positive, while three papillomas were negative. Of total 46 HPV-positive OPSCCs, 43 cases were also SISH-positive, while p16 overexpression was found in 45 of 46 HPV positive OPSCC cases. In OPSCC specimens, the sensitivity and specificity of the combined SISH probes (HPV16 and 33) were both 100.00%, when compared to HPV PCR. HPV positivity of the tumors appeared significant for predicting progression-free survival, cause specific survival and overall survival in a multivariate setting.The recently developed mRNA SISH methodology can detect HPV-driven OPSCCs without any additional test in 79% of cases. Positive SISH signals enable the visualization of viral transcripts required to recognize clinically relevant HPV infection. However, rare and tiny signals require an experienced pathologist to establish a consensus interpretation of results. The currently applied HR-HPV mRNA SISH analysis may serve as a groundwork for additional studies.
Pillai SG, Zhu P, Siddappa CM, Adams DL, Li S, Makarova OV, Amstutz P, Nunley R, Tang CM, Watson MA, Aft RL.
PMID: 28129357 | DOI: 10.1371/journal.pone.0170761
Abstract
PURPOSE:
Molecular characterization of disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer (BC) patients has been hindered by their rarity. To enrich for these cells using an antigen-independent methodology, we have evaluated a size-based microfiltration device in combination with several downstream biomarker assays.
METHODS:
BM aspirates were collected from healthy volunteers or BC patients. Healthy BM was mixed with a specified number of BC cells to calculate recovery and fold enrichment by microfiltration. Specimens were pre-filtered using a 70 μm mesh sieve and the effluent filtered through CellSieve microfilters. Captured cells were analyzed by immunocytochemistry (ICC), FISH for HER-2/neu gene amplification status, and RNA in situ hybridization (RISH). Cells eluted from the filter were used for RNA isolation and subsequent qRT-PCR analysis for DTC biomarker gene expression.
RESULTS:
Filtering an average of 14×106 nucleated BM cells yielded approximately 17-21×103 residual BM cells. In the BC cell spiking experiments, an average of 87% (range 84-92%) of tumor cells were recovered with approximately 170- to 400-fold enrichment. Captured BC cells from patients co-stained for cytokeratin and EpCAM, but not CD45 by ICC. RNA yields from 4 ml of patient BM after filtration averaged 135ng per 10 million BM cells filtered with an average RNA Integrity Number (RIN) of 5.3. DTC-associated gene expression was detected by both qRT-PCR and RISH in filtered spiked or BC patient specimens but, not in control filtered normal BM.
CONCLUSIONS:
We have tested a microfiltration technique for enrichment of BM DTCs. DTC capture efficiency was shown to range from 84.3% to 92.1% with up to 400-fold enrichment using model BC cell lines. In patients, recovered DTCs can be identified and distinguished from normal BM cells using multiple antibody-, DNA-, and RNA-based biomarker assays.
Lee S, Lee E, Kim R, Kim J, Lee S, Park H, Yang E, Kim H, Kim E.
PMID: 29970987 | DOI: 10.3389/fnmol.2018.00209
Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation.
Postnatal Sox6 regulates synaptic function of cortical parvalbumin-expressing neurons
The Journal of neuroscience : the official journal of the Society for Neuroscience
Munguba, H;Chattopadhyaya, B;Nilsson, S;Carriço, JN;Memic, F;Oberst, P;Batista-Brito, R;Munoz-Manchado, AB;Wegner, M;Fishell, G;Di Cristo, G;Hjerling-Leffler, J;
PMID: 34503995 | DOI: 10.1523/JNEUROSCI.0021-21.2021
Cortical parvalbumin (Pvalb)-expressing neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb+ neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb+ neurons until adulthood, we utilized conditional knockout strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb+ neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb+ neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb+ neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb+ neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb+ neurons' synaptic output. Furthermore, Pvalb+ neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphological synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb+ neurons into adulthood.Significance statement:Cortical parvalbumin-expressing (Pvalb+) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons. Here we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb+ neurons until adulthood, leaving unaffected other maturational features of this neuronal population.
Picard N, Takesian AE, Fagiolini M, Hensch TK.
PMID: 30696941 | DOI: 10.1038/s41380-018-0341-9
Ketamine has emerged as a widespread treatment for a variety of psychiatric disorders when used at sub-anesthetic doses, but the neural mechanisms underlying its acute action remain unclear. Here, we identified NMDA receptors containing the 2A subunit (GluN2A) on parvalbumin (PV)-expressing inhibitory interneurons as a pivotal target of low-dose ketamine. Genetically deleting GluN2A receptors globally or selectively from PV interneurons abolished the rapid enhancement of visual cortical responses and gamma-band oscillations by ketamine. Moreover, during the follicular phase of the estrous cycle in female mice, the ketamine response was transiently attenuated along with a concomitant decrease of grin2A mRNA expression within PV interneurons. Thus, GluN2A receptors on PV interneurons mediate the immediate actions of low-dose ketamine treatment, and fluctuations in receptor expression across the estrous cycle may underlie sex-differences in drug efficacy.
Soh H, Park S, Ryan K, Springer K, Maheshwari A, Tzingounis AV.
PMID: 30382937 | DOI: 10.7554/eLife.38617
KCNQ2/3 channels, ubiquitously expressed neuronal potassium channels, have emerged as indispensable regulators of brain network activity. Despite their critical role in brain homeostasis, the mechanisms by which KCNQ2/3 dysfunction lead to hypersychrony are not fully known. Here, we show that deletion of KCNQ2/3 channels changed PV+ interneurons', but not SST+ interneurons', firing properties. We also find that deletion of either KCNQ2/3 or KCNQ2 channels from PV+ interneurons led to elevated homeostatic potentiation of fast excitatory transmission in pyramidal neurons. Pvalb-Kcnq2 null-mice showed increased seizure susceptibility, suggesting that decreases in interneuron KCNQ2/3 activity remodels excitatory networks, providing a new function for these channels.
Abdou, Y;Barton, D;Ronczka, A;Cushing, D;Klichinsky, M;Binder, K;
| DOI: 10.1158/1538-7445.sabcs21-ot1-03-01
Adoptive T cell therapies have led to remarkable advances among patients with hematologic malignancies, but not in those with solid tumors. Macrophages are actively recruited into, and abundantly present in the solid tumor microenvironment (sTME). Tumor- associated macrophages typically evince immunosuppressive behavior, but when engineered to be proinflammatory, may be an ideal vector to administer adoptive cellular therapy in solid tumors. Furthermore, insertion of a CAR on the macrophages confers the ability to selectively recognize and phagocytose antigen overexpressing cancer cells. Additionally, CAR macrophages reprogram the sTME and present neoantigens to T cells, leading to epitope spreading and immune memory. Human Epidermal Growth Factor Receptor 2 (HER2) overexpression promotes tumorigenesis and is seen in many cancers, including but not limited to breast and gastroesophageal cancers (Table 1). CT-0508 is a cell product comprised of autologous monocyte-derived pro-inflammatory macrophages expressing an anti-HER2 CAR. Pre-clinical studies have shown that CT-0508 induced targeted cancer cell phagocytosis while sparing normal cells, decreasing tumor burden and prolonging survival in relevant models. CT-0508 cells were safe and effective in a semi-immunocompetent mouse model of human HER2 overexpressing ovarian cancer. This is a FIH Phase 1 study to evaluate safety, tolerability, cell manufacturing feasibility, trafficking, and preliminary evidence of efficacy of investigational product CT-0508 in approximately 18 subjects with locally advanced (unresectable) or metastatic solid tumors overexpressing HER2, who have failed available therapies including anti-HER2 therapies where indicated.Filgrastim is being used to mobilize autologous hematopoietic progenitor cells for monocyte collection by apheresis. The CT-0508 CAR macrophage product is manufactured, prepared and cryopreserved from mobilized peripheral blood monocytes. The study is enrolling Group 1 subjects, who receive CT-0508 infusion split over D1, 3 and 5. Subjects will be continually assessed for acute and cumulative toxicity. Dose limiting toxicities will be observed and addressed by a Safety Review Committee. Group 2 subjects will follow, and will receive the full CT-0508 infusion on D1. Pre and post treatment biopsies and blood samples will be collected to investigate correlates of safety (immunogenicity), trafficking (PCR, RNA scope), CT-0508 persistence in blood and in the tumor, target antigen engagement, TME modulation (single cell RNA sequencing), immune response (TCR sequencing) and others. Clinical trial registry number: NCT04660929 Table 1.HER2 Positivity Frequencies Across Tumor TypesTumor typeHER2 positivity (%)ReferenceBladder cancer8-70Gandour-Edwards et al, 2002;Caner et al, 2008;Laé et al, 2010; Fleischmann et al, 2011;Charfi et al, 2013;Yan et al, 2015Breast cancer11.0-25.0Varga et al, 2013;Stenehjem et al, 2014Cervical cancer2.8-3.9Chavez-Blanco et al, 2004;Yan et al, 2015Colorectal cancer1.6-5.0Schuell et al, 2006;Ingold Heppner et al, 2014;Seo et al, 2014Esophageal cancer12.0-14.0König et al, 2013;Yoon et al, 2013;Wang et al, 2014Extrahepatic Cholangiocarcinoma6.3-9.0Yoshikawa et al, 2008;Yan et al, 2015Gallbladder cancer9.8-12.8Roa et al, 2014;Yan et al, 2015Gastric adenocarcinoma7.0-34.0Rüschoff et al, 2012;Hofmann et al, 2008Ovarian cancer26Slamon et al, 1989Salivary mucoepidermoid carcinomas17.6Glisson et al, 2004Salivary duct carcinoma30-40Skálová et al, 2003; Cornolti et al, 2007; Nardi et al, 2013Testicular cancer2.4Yan et al, 2015Uterine cancer3.0Yan et al, 2015 Citation Format: Yara George Abdou, Debora Barton, Amy Ronczka, Daniel Cushing, Michael Klichinsky, Kim Reiss Binder. A phase 1, first in human (FIH) study of adenovirally transduced autologous macrophages engineered to contain an anti-HER2 chimeric antigen receptor (CAR) in subjects with HER2 overexpressing solid tumors [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr OT1-03-01.
Abstract CT204: A phase 1, first in human (FIH) study of adenovirally transduced autologous macrophages engineered to contain an anti-HER2 chimeric antigen receptor (CAR) in subjects with HER2 overexpressing solid tumors
Bauml, J;Barton, D;Ronczka, A;Cushing, D;Klichinsky, M;Dees, E;
| DOI: 10.1158/1538-7445.am2021-ct204
Background: Adoptive T cell therapies have led to remarkable advances among patients with hematologic malignancies, but not in those with solid tumors. Macrophages are actively recruited into, and abundantly present in the solid tumor microenvironment (sTME). Tumor- associated macrophages typically evince immunosuppressive behavior, but when engineered to be proinflammatory, may be an ideal vector to administer adoptive cellular therapy in solid tumors. Furthermore, insertion of a CAR confers on the macrophages the ability to selectively recognize and phagocytose antigen overexpressing cancer cells. Additionally, CAR macrophages reprogram the sTME and present neoantigens to T cells, leading to epitope spreading and immune memory. Human Epidermal Growth Factor Receptor 2 (HER2) is overexpressed in many cancers, including but not limited to breast and gastroesophageal cancers. CT-0508 is a cell product comprised of autologous monocyte-derived pro-inflammatory macrophages expressing an anti-HER2 CAR. Pre-clinical studies have shown that CT-0508 induced targeted cancer cell phagocytosis while sparing normal cells, decreased tumor burden and prolonged survival in relevant models. CT-0508 cells were safe in a semi-immunocompetent mouse model of human HER2 overexpressing ovarian cancer. Methods: This is a FIH Phase 1 study to evaluate safety, tolerability, cell manufacturing feasibility, trafficking, and preliminary evidence of efficacy of investigational product CT-0508 in approximately 18 subjects with locally advanced (unresectable) or metastatic solid tumors overexpressing HER2 who have failed available therapies including anti-HER2 therapies when indicated. Filgrastim will be used to mobilize autologous hematopoietic progenitor cells for monocyte collection by apheresis. The CT-0508 CAR macrophage product will be manufactured, prepared and cryopreserved from mobilized peripheral blood monocytes. Group 1 subjects will receive CT-0508 infusion split over D1, 3 and 5. Subjects will be continually assessed for acute and cumulative toxicity. Dose limiting toxicities will be observed and addressed by a Safety Review Committee. Group 2 subjects will receive the full CT-0508 infusion on D1. Pre and post treatment biopsies and blood samples will be collected to investigate correlates of safety (immunogenicity), trafficking (PCR, RNA scope), persistence, target antigen engagement, TME modulation (single cell RNA sequencing), immune response (TCR sequencing) and others.
Abs E, Poorthuis RB, Apelblat D, Muhammad K, Pardi MB, Enke L, Kushinsky D, Pu DL, Eizinger MF, Conzelmann KK, Spiegel I, Letzkus JJ.
PMID: - | DOI: 10.1016/j.neuron.2018.09.001
A wealth of data has elucidated the mechanisms by which sensory inputs are encoded in the neocortex, but how these processes are regulated by the behavioral relevance of sensory information is less understood. Here, we focus on neocortical layer 1 (L1), a key location for processing of such top-down information. Using Neuron-Derived Neurotrophic Factor(NDNF) as a selective marker of L1 interneurons (INs) and in vivo 2-photon calcium imaging, electrophysiology, viral tracing, optogenetics, and associative memory, we find that L1 NDNF-INs mediate a prolonged form of inhibition in distal pyramidal neuron dendrites that correlates with the strength of the memory trace. Conversely, inhibition from Martinotti cells remains unchanged after conditioning but in turn tightly controls sensory responses in NDNF-INs. These results define a genetically addressable form of dendritic inhibition that is highly experience dependent and indicate that in addition to disinhibition, salient stimuli are encoded at elevated levels of distal dendritic inhibition.
Zhang, Y;Roy, DS;Zhu, Y;Chen, Y;Aida, T;Hou, Y;Shen, C;Lea, NE;Schroeder, ME;Skaggs, KM;Sullivan, HA;Fischer, KB;Callaway, EM;Wickersham, IR;Dai, J;Li, XM;Lu, Z;Feng, G;
PMID: 35676479 | DOI: 10.1038/s41586-022-04806-x
Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Weil, T;Daly, KM;Yarur Castillo, H;Thomsen, MB;Wang, H;Mercau, ME;Hattar, S;Tejeda, H;Fernandez, DC;
PMID: 35687680 | DOI: 10.1126/sciadv.abn3567
Exposure to irregular lighting schedules leads to deficits in affective behaviors. The retino-recipient perihabenular nucleus (PHb) of the dorsal thalamus has been shown to mediate these effects in mice. However, the mechanisms of how light information is processed within the PHb remains unknown. Here, we show that the PHb contains a distinct cluster of GABAergic neurons that receive direct retinal input. These neurons are part of a larger inhibitory network composed of the thalamic reticular nucleus and zona incerta, known to modulate thalamocortical communication. In addition, PHbGABA neurons locally modulate excitatory-relay neurons, which project to limbic centers. Chronic exposure to irregular light-dark cycles alters photo-responsiveness and synaptic output of PHbGABA neurons, disrupting daily oscillations of genes associated with inhibitory and excitatory PHb signaling. Consequently, selective and chronic PHbGABA manipulation results in mood alterations that mimic those caused by irregular light exposure. Together, light-mediated disruption of PHb inhibitory networks underlies mood deficits.
Ali Marandi Ghoddousi, R;Magalong, VM;Kamitakahara, AK;Levitt, P;
PMID: 36313803 | DOI: 10.1016/j.crmeth.2022.100316
Spatial gene expression, achieved classically through in situ hybridization, is a fundamental tool for topographic phenotyping of cell types in the nervous system. Newly developed techniques allow for visualization of multiple mRNAs at single-cell resolution and greatly expand the ability to link gene expression to tissue topography, yet there are challenges in efficient quantification and analysis of these high-dimensional datasets. We have therefore developed the single-cell automated multiplex pipeline for RNA (SCAMPR), facilitating rapid and accurate segmentation of neuronal cell bodies using a dual immunohistochemistry-RNAscope protocol and quantification of low- and high-abundance mRNA signals using open-source image processing and automated segmentation tools. Proof of principle using SCAMPR focused on spatial mapping of gene expression by peripheral (vagal nodose) and central (visual cortex) neurons. The analytical effectiveness of SCAMPR is demonstrated by identifying the impact of early life stress on gene expression in vagal neuron subtypes.