Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (117)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • (-) Remove Cre filter Cre (33)
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (30) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (12) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (9) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (8) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (3) Apply RNAscope 2.5 VS Assay filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (80) Apply Cancer filter
  • HPV (72) Apply HPV filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Neuroscience (24) Apply Neuroscience filter
  • Other (4) Apply Other filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • other: Aging (2) Apply other: Aging filter
  • Addiction (1) Apply Addiction filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • diabetes (1) Apply diabetes filter
  • Eating (1) Apply Eating filter
  • Metabolism (1) Apply Metabolism filter
  • Nueroscience (1) Apply Nueroscience filter
  • Obesity (1) Apply Obesity filter
  • Other: Methods (1) Apply Other: Methods filter
  • Other: Obesity (1) Apply Other: Obesity filter
  • Other: Vomeronasal receptor gene clusters (1) Apply Other: Vomeronasal receptor gene clusters filter
  • Other; Kidney Fibrosis (1) Apply Other; Kidney Fibrosis filter
  • Pain (1) Apply Pain filter
  • Protocols (1) Apply Protocols filter
  • Sleep (1) Apply Sleep filter
  • therapeutics (1) Apply therapeutics filter
  • Trauma (1) Apply Trauma filter
  • Zinc (1) Apply Zinc filter

Category

  • Publications (117) Apply Publications filter
Acute hypernatremia promotes anxiolysis and attenuates stress-induced activation of the hypothalamic-pituitary-adrenal axis in male mice.

Physiol Behav. 2014 Apr 2. pii: S0031-9384(14)00173-5.

Smith JA, Wang L, Hiller H, Taylor CT, de Kloet AD, Krause EG.
PMID: 24704193 | DOI: 10.1016/j.physbeh.2014.03.027.

Previous investigation by our laboratory found that acute hypernatremia potentiates an oxytocinergic tone that inhibits parvocellular neurosecretory neurons in the paraventricular nucleus of the hypothalamus (PVN), attenuates restraint-induced surges in corticosterone (CORT), and reduces anxiety-like behavior in male rats. To investigate the neural mechanisms mediating these effects and extend our findings to a more versatile species, we repeated our studies using laboratory mice. In response to 2.0M NaCl injections, mice had increased plasma sodium concentrations which were associated with a blunted rise in CORT subsequent to restraint challenge relative to 0.15M NaCl injected controls. Immunofluorescent identification of the immediate early gene product Fos found that 2.0M NaCl treatment increased the number of activated neurons producing oxytocin in the PVN. To evaluate the effect of acute hypernatremia on PVN neurons producing corticotropin-releasing hormone (CRH), we used the Cre-lox system to generate mice that produced the red fluorescent protein, tdTomato, in cells that had Cre-recombinase activity driven by CRH gene expression. Analysis of brain tissue from these CRH-reporter mice revealed that 2.0M NaCl treatment caused a dramatic reduction in Fos-positive nuclei specifically in CRH-producing PVN neurons. This altered pattern of activity was predictive of alleviated anxiety-like behavior as mice administered 2.0M NaCl spent more time exploring the open arms of an elevated-plus maze than 0.15M NaCl treated controls. Taken together, these results further implicate an oxytocin-dependent inhibition of CRH neurons in the PVN and demonstrate the impact that slight elevations in plasma sodium have on the hypothalamic-pituitary-adrenocortical axis output and anxiety-like behavior.
Presence of high risk HPV DNA but indolent transcription of E6/E7 oncogenes in invasive ductal carcinoma of breast

Pathology - Research and Practice

2016 Sep 22

Wanga D, Fu L, Shah W, Zhang J, Yan Y, Ge X, He J, Wang Y, Xu Li.
PMID: - | DOI: dx.doi.org/10.1016/j.prp.2016.09.009

Background and aims

The causative role of high risk human papillomavirus (HR-HPV) in breast cancer development is controversial, though a number of reports have identified HR-HPV DNA in breast cancer specimens. Nevertheless, most studies to date have focused primarily on viral DNA rather than the viral transcription. The aim of this study was to investigate the presence of HR-HPV in breast cancer tissues at HPV DNA level and HPV oncogenes mRNA level by in situ hybridization (ISH).

Methods

One hundred and forty six (146) cases of breast invasive ductal carcinoma(IDC) and 83 cases of benign breast lesions were included in the study. Type specific oligonucleotide probes were used for the DNA detection of HPV 16,18 and 58 by ISH. HR-HPV oncogenes mRNA was assayed by novel RNAscope HR-HPV HR7 assay ISH. p16 protein expression was evaluated by immunohistochemistry (IHC).

Results

HR-HPV 16,18 and 58 DNA were detected in 52 out of 146 (35.6%) IDC and in 3 out of 83 (3.6%) benign breast lesions by ISH. The HR-HPV mRNAs was detected only in a few specimens with strong HPV DNA positivity(4/25) in a few scattered cancer cells with very weak punctate nuclear and/or cytoplasmic staining. p16 over-expression did not correlate with the HPV DNA positive breast cancer samples(17/52 HPVDNA+ vs 28/94 HPV DNA-, p = 0.731).

Conclusions

HR-HPVs certainly exist in breast cancer tissue with less active transcription, which implies that the causal role of HPV in breast cancer development need further study.

Squamous and Neuroendocrine Specific Immunohistochemical Markers in Head and Neck Squamous Cell Carcinoma: A Tissue Microarray Study.

Head Neck Pathol.

2017 May 20

Lewis JS Jr, Chernock RD, Bishop JA.
PMID: 28528398 | DOI: 10.1007/s12105-017-0825-y

The performance characteristics of neuroendocrine-specific and squamous-specific immunohistochemical markers in head and neck squamous cell carcinomas (SCC), in particular in oropharyngeal tumors in this era of human papillomavirus (HPV)-induced cases, are not well-established. The differential diagnosis for poorly differentiated SCCs, for nonkeratinizing oropharyngeal SCCs, and for other specific SCC variants such as basaloid SCC and undifferentiated (or lymphoepithelial-like) carcinomas includes neuroendocrine carcinomas. Given that neuroendocrine carcinomas of the head and neck are aggressive regardless of HPV status, separating them from SCC is critically important. In this study, we examined the neuroendocrine markers CD56, synaptophysin, and chromogranin-A along with the squamous markers p40 and cytokeratin 5/6 in a large tissue microarray cohort of oral, oropharyngeal, laryngeal, and hypopharyngeal SCCs with known HPV results by RNA in situ hybridization for the oropharyngeal tumors. Results were stratified by site and specific SCC variant. The neuroendocrine stains were rarely expressed in SCC (<1% overall) with CD56 the least, and chromogranin-A the most, specific markers. Further, p40 and cytokeratin 5/6 were very consistently expressed in all head and neck SCC (>98% overall), including very strong, consistent staining in oropharyngeal HPV-related nonkeratinizing SCC. Undifferentiated (or lymphoepithelial-like) carcinomas of the oropharynx are more frequently p40 or cytokeratin 5/6 negative or show only weak or focal expression. In summary, markers of neuroendocrine and squamous differentiation show very high specificity and sensitivity, respectively, across the different types of head and neck SCC.

Human papillomavirus (HPV) status of non-tobacco related squamous cell carcinomas of the lateral tongue.

Oral Oncol. Apr; 50(4):306–310.

Poling JS, Ma XJ, Bui S, Luo Y, Li R, Koch WM, Westra WH (2014).
PMID: 24485566 | DOI: 10.1016/j.oraloncology.2014.01.006.

OBJECTIVES: The human papillomavirus (HPV) is an important cause of some head and neck squamous cell carcinomas (HNSCCs), but its role in cancer of the lateral tongue is debatable. Suspicion of HPV causation is heightened when these lateral tongue carcinomas arise in patients that are young and/or have never smoked. The purpose of this study was to determine the incidence of transcriptionally active high risk HPV in these tumors, with a particular emphasis on non-smoking patients who are often presumed to have HPV-positive tumors. METHODS: We evaluated 78 HNSCCs of the lateral tongue for the presence of HPV using p16 immunohistochemistry and an RNA in situ hybridization assay targeting HPV E6/E7 mRNA. The study population was enriched for patients without traditional risk factors such as smoking and drinking. RESULTS: P16 overexpression was detected in 9 (11.5%) of 78 cases, but HPV E6/E7 mRNA transcripts were detected in only 1 (1.3%) case (positive predictive value of p16 staining for the presence of transcriptionally active HPV=0.12). HPV mRNA transcripts were not detected in any patient under 40 (n=11), or in patients who had never smoked (n=44), had quit smoking (n=15), and/or were only light consumers of alcohol (n=57). CONCLUSIONS: HPV is not detected in the vast majority of lateral tongue carcinomas. In light of the observation that HPV plays little if any role in the development of these cancers, routine HPV testing is unwarranted , even for patients without traditional risk factors. P16 staining is not a reliable marker for the presence of transcriptionally active HPV at this particular anatomic site.
Correlation of Circulating CD64+/CD163+ Monocyte Ratio and stroma/peri-tumoral CD163+ Monocyte Density with Human Papillomavirus Infected Cervical Lesion Severity

Cancer Microenviron.

2017 Oct 24

Swangphon P, Pientong C, Sunthamala N, Bumrungthai S, Azuma M, Kleebkaow P, Tangsiriwatthana T, Sangkomkamhang U, Kongyingyoes B, Ekalaksananan T.
PMID: 29064053 | DOI: 10.1007/s12307-017-0200-2

HPV infected cervical cells secrete mediators that are gradually changed and have influence on infiltrating M2 phenotypic monocytes in cervical lesions. However, profiles of circulating immune cells in women with cervical lesions and M2 phenotypic monocyte activity in HPV infected cervical lesions are limited. This study aimed to investigate circulating monocyte populations correlated with M2 phenotype density and its activity in HPV infected cervical lesions. HPV DNA was investigated in cervical tissues using PCR. High risk HPV E6/E7 mRNA was detected using in situ hybridization. CD163 immunohistochemical staining was performed for M2 macrophage. CD163 and Arg1 mRNA expression were detected using real-time PCR. Circulating monocyte subpopulations were analyzed using flow cytometry. CD163 and Arg1 mRNA expression were increased according to cervical lesion severity and corresponding with density of M2 macrophage in HSIL and SCC in stroma and peri-tumoral areas. Additionally, the relationship between M2 macrophage infiltration and high risk HPV E6/E7 mRNA expression was found and corresponded with cervical lesion severity. Circulating CD14+CD16+ and CD14+CD163+ monocytes were elevated in No-SIL and cervical lesions. Interestingly, CD14+CD64+ monocyte was greatly elevated in HSIL and SCC, whereas intracellular IL-10+monocytes were not significantly different between cervical lesions. The correlation between increasing ratio of circulating CD64+/CD163+monocyte and density of infiltrating CD163+ monocytes was associated with severity of HPV infected cervical lesions. The elevated circulating CD64+/CD163+ monocyte ratio correlates to severity of HPV infected cervical lesions and might be a prognostic marker in cervical cancer progression.

Cholinergic projections to the preBötzinger complex

The Journal of comparative neurology

2023 May 21

Biancardi, V;Yang, X;Ding, X;Passi, D;Funk, GD;Pagliardini, S;
PMID: 37211631 | DOI: 10.1002/cne.25497

Rhythmic inspiratory activity is generated in the preBötzinger complex (preBötC), a neuronal network located bilaterally in the ventrolateral medulla. Cholinergic neurotransmission affects respiratory rhythmogenic neurons and inhibitory glycinergic neurons in the preBötC. Acetylcholine has been extensively investigated given that cholinergic fibers and receptors are present and functional in the preBötC, are important in sleep/wake cycling, and modulate inspiratory frequency through its action on preBötC neurons. Despite its role in modulating inspiratory rhythm, the source of acetylcholine input to the preBötC is not known. In the present study, we used retrograde and anterograde viral tracing approaches in transgenic mice expressing Cre-recombinase driven by the choline acetyltransferase promoter to identify the source of cholinergic inputs to the preBötC. Surprisingly, we observed very few, if any, cholinergic projections originating from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT), two main cholinergic, state-dependent systems long hypothesized as the main source of cholinergic inputs to the preBötC. On the contrary, we identified glutamatergic and GABAergic/glycinergic neurons in the PPT/LDT that send projections to the preBötC. Although these neurons contribute minimally to the direct cholinergic modulation of preBötC neurons, they could be involved in state-dependent regulation of breathing. Our data also suggest that the source of cholinergic inputs to the preBötC appears to originate from cholinergic neurons in neighboring regions of the medulla, the intermediate reticular formation, the lateral paragigantocellularis, and the nucleus of the solitary tract.
Mucoepidermoid Carcinoma Does Not Harbor Transcriptionally Active High Risk Human Papillomavirus Even in the Absence of the MAML2 Translocation

Head Neck Pathol. 2014 Apr 5

Bishop JA, Yonescu R, Batista D, Yemelyanova A, Ha PK, Westra WH
PMID: 24706055 | DOI: 10.1007/s12105-014-0541-9

High risk human papillomavirus (HPV) is firmly established as an important cause of oropharyngeal carcinoma. Recent studies have also implicated HPV as a cause of mucoepidermoid carcinoma (MEC)—a tumor of salivary gland origin that frequently harbors MAML2 translocations. The purpose of this study was to determine the prevalence of transcriptionally active HPV in a large group of MECs and to determine whether HPV infection and the MAML2 translocation are mutually exclusive events. Break-apart fluorescence in situ hybridization for MAML2 was performed on a tissue microarray containing 92 MECs. HPV testing was performed using RNA in situ hybridization targeting high risk HPV mRNA E6/E7 transcripts. Of the 71 MECs that could be evaluated by FISH, 57 (80 %) harbored the MAML2 rearrangement. HPV was not detected in any of the 57 MECs that contained a MAML2 rearrangement, in any of the 14 MECs that did not contain the rearrangement, or in any of the 21 MECs where MAML2 status was unknown. High risk HPV does not appear to play any significant role in the development of MEC. It neither complements nor replaces MAML2 translocation in the tumorigenesis of MEC
Low prevalence of transcriptionally active human papilloma virus in Indian patients with HNSCC and leukoplakia

Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

2016 Jun 22

Bhosale PG, Pandey M, Desai RS, Patil A, Kane S, Prabhash K, Mahimkar MB.
PMID: - | DOI: 10.1016/j.oooo.2016.06.006

Abstract

Objectives

In the present study, we comprehensively analyzed the prevalence of transcriptionally active HPV in tissue samples of Indian patients with leukoplakia - predominantly hyperplastic lesions and HNSCC. In addition, saliva samples from patients with HNSCC were screened for HPV detection.

Study Design

p16 overexpression was analyzed by immunohistochemistry. Leukoplakia (n = 121) and HNSCC (n = 427) tissue samples and the saliva of patients with HNSCC (n = 215) were tested for HPV using nested PCR. Positive samples were sequenced for subtyping. The presence of HPV E6/E7 mRNA was confirmed by RNA in-situ hybridization.

Results

p16 expression and HPV DNA were not detected in any of the leukoplakia specimens. Of the 427 HNSCC tumors, 9 showed p16 overexpression and 7/427 cases were positive for HPV16 DNA, either in saliva and/or tissue. E6/E7 mRNA positivity was observed in eight HNSCC samples, primarily from patients with no habit of tobacco consumption. The prevalence of high-risk HPV was restricted to oropharynx and larynx with very little concordance between p16 overexpression and HPV positivity. All patients with HPV positive saliva samples had transcriptionally active HPV present in their tumors.

Conclusion

Presence of HPV-DNA does not necessarily reflect transcriptionally active virus in tumors; hence, it is important to consider this fact while categorizing HPV associated tumors.

TrkB Signaling Influences Gene Expression in Cortistatin-Expressing Interneurons

eNeuro

2020 Feb 10

Maynard KR, Kardian A, Hill JL, Mai Y, Barry B, Hallock HL, Jaffe AE, Martinowich K
PMID: 31941661 | DOI: 10.1523/ENEURO.0310-19.2019

Brain-derived neurotrophic factor (BDNF) signals through its cognate receptor tropomyosin receptor kinase B (TrkB) to promote the function of several classes of inhibitory interneurons. We previously reported that loss of BDNF-TrkB signaling in cortistatin (Cort)-expressing interneurons leads to behavioral hyperactivity and spontaneous seizures in mice. We performed bulk RNA sequencing (RNA-seq) from the cortex of mice with disruption of BDNF-TrkB signaling in cortistatin interneurons, and identified differential expression of genes important for excitatory neuron function. Using translating ribosome affinity purification and RNA-seq, we define a molecular profile for Cort-expressing inhibitory neurons and subsequently compare the translatome of normal and TrkB-depleted Cort neurons, revealing alterations in calcium signaling and axon development. Several of the genes enriched in Cort neurons and differentially expressed in TrkB-depleted neurons are also implicated in autism and epilepsy. Our findings highlight TrkB-dependent molecular pathways as critical for the maturation of inhibitory interneurons and support the hypothesis that loss of BDNF signaling in Cort interneurons leads to altered excitatory/inhibitory balance
An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats

Nature communications

2023 Feb 24

Iwasaki, M;Lefevre, A;Althammer, F;Clauss Creusot, E;Łąpieś, O;Petitjean, H;Hilfiger, L;Kerspern, D;Melchior, M;Küppers, S;Krabichler, Q;Patwell, R;Kania, A;Gruber, T;Kirchner, MK;Wimmer, M;Fröhlich, H;Dötsch, L;Schimmer, J;Herpertz, SC;Ditzen, B;Schaaf, CP;Schönig, K;Bartsch, D;Gugula, A;Trenk, A;Blasiak, A;Stern, JE;Darbon, P;Grinevich, V;Charlet, A;
PMID: 36828816 | DOI: 10.1038/s41467-023-36641-7

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.
CDX2 Expression in Primary Skin Tumors- Case Series and Review of the Literature

Human pathology

2022 Aug 01

Tekin, B;Kundert, P;Yang, HH;Guo, R;
PMID: 35926811 | DOI: 10.1016/j.humpath.2022.07.013

CDX2 expression characterizes tumors of gastrointestinal origin, including those of intestinal-type differentiation. In dermatopathology, CDX2 expression is reported in four settings: cutaneous metastases from carcinomas of intestinal origin or differentiation, extramammary Paget's disease associated with an underlying colorectal or urothelial tumor, pilomatricomas and pilomatrical carcinomas, and rare primary cutaneous (adeno)squamous carcinomas with intestinal immunophenotype. Over 4 years (10/2017-10/2021), 252 dermatopathology cases with CDX2 immunostain were reviewed, revealing 46 cases with confirmed positive staining. Among them, 11 cases confirmed as primary non-intestinal type cutaneous carcinoma with definitively positive CDX2 nuclear staining were further studied. All cases demonstrated basaloid morphology with atypia, variable necrosis, and brisk mitotic activity. Cases 1-5 had heterogeneous features that cannot be further classified, including two cases with neuroendocrine or pseudoglandular/pseudopapillary features, and one case with HPV high risk E6/E7 ISH positivity. In cases 6 through 11, the diagnosis of pilomatrical carcinoma was supported morphologically. This study substantiates the association of CDX2 with pilomatrical carcinoma. In addition, CDX2 positivity was observed in a subset of basaloid cutaneous carcinomas of ambiguous classification. However, this finding also raises a diagnostic pitfall in clinical diagnostic specificity of the CDX2 immunostain in skin cancers, which can be observed in rare while heterogenous subsets of primary cutaneous carcinomas with primitive cytomorphology.
Cerebellar dopamine D2 receptors regulate social behaviors

Nature neuroscience

2022 Jun 16

Cutando, L;Puighermanal, E;Castell, L;Tarot, P;Belle, M;Bertaso, F;Arango-Lievano, M;Ango, F;Rubinstein, M;Quintana, A;Chédotal, A;Mameli, M;Valjent, E;
PMID: 35710984 | DOI: 10.1038/s41593-022-01092-8

The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?