bioRxiv : the preprint server for biology
Zhang, W;Zhao, J;Deng, L;Ishimwe, N;Pauli, J;Wu, W;Shan, S;Kempf, W;Ballantyne, MD;Kim, D;Lyu, Q;Bennett, M;Rodor, J;Turner, AW;Lu, YW;Gao, P;Choi, M;Warthi, G;Kim, HW;Barroso, MM;Bryant, WB;Miller, CL;Weintraub, NL;Maegdefessel, L;Miano, JM;Baker, AH;Long, X;
PMID: 36711681 | DOI: 10.1101/2023.01.07.522948
Activation of vascular smooth muscle cells (VSMCs) inflammation is vital to initiate vascular disease. However, the role of human-specific long noncoding RNAs (lncRNAs) in VSMC inflammation is poorly understood.Bulk RNA-seq in differentiated human VSMCs revealed a novel human-specific lncRNA called IN flammatory M K L1 I nteracting L ong N oncoding RNA ( INKILN ). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation and human atherosclerosis and abdominal aortic aneurysm (AAA) samples. The transcriptional regulation of INKILN was determined through luciferase reporter system and chromatin immunoprecipitation assay. Both loss- and gain-of-function approaches and multiple RNA-protein and protein-protein interaction assays were utilized to uncover the role of INKILN in VSMC proinflammatory gene program and underlying mechanisms. Bacterial Artificial Chromosome (BAC) transgenic (Tg) mice were utilized to study INKLIN expression and function in ligation injury-induced neointimal formation.INKILN expression is downregulated in contractile VSMCs and induced by human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB site within its proximal promoter. INKILN activates the proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. Mechanistically, INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks ILIβ-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1, and the luciferase activity of an NF-κB reporter. Further, INKILN knockdown enhances MKL1 ubiquitination, likely through the reduced physical interaction with the deubiquitinating enzyme, USP10. INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in BAC Tg mice.These findings elucidate an important pathway of VSMC inflammation involving an INKILN /MKL1/USP10 regulatory axis. Human BAC Tg mice offer a novel and physiologically relevant approach for investigating human-specific lncRNAs under vascular disease conditions.
Satgunaseelan, L;Strbenac, D;Tadi, S;Nguyen, K;Wykes, J;Palme, CE;Low, TH;Yang, JYH;Clark, JR;Gupta, R;
PMID: 36358632 | DOI: 10.3390/cancers14215213
Viruses are well known drivers of several human malignancies. A causative factor for oral cavity squamous cell carcinoma (OSCC) in patients with limited exposure to traditional risk factors, including tobacco use, is yet to be identified. Our study aimed to comprehensively evaluate the role of viral drivers in OSCC patients with low cumulative exposure to traditional risk factors. Patients under 50 years of age with OSCC, defined using strict anatomic criteria were selected for WGS. The WGS data was interrogated using viral detection tools (Kraken 2 and BLASTN), together examining >700,000 viruses. The findings were further verified using tissue microarrays of OSCC samples using both immunohistochemistry and RNA in situ hybridisation (ISH). 28 patients underwent WGS and comprehensive viral profiling. One 49-year-old male patient with OSCC of the hard palate demonstrated HPV35 integration. 657 cases of OSCC were then evaluated for the presence of HPV integration through immunohistochemistry for p16 and HPV RNA ISH. HPV integration was seen in 8 (1.2%) patients, all middle-aged men with predominant floor of mouth involvement. In summary, a wide-ranging interrogation of >700,000 viruses using OSCC WGS data showed HPV integration in a minority of male OSCC patients and did not carry any prognostic significance.
Ichihara, R;Shiraki, Y;Mizutani, Y;Iida, T;Miyai, Y;Esaki, N;Kato, A;Mii, S;Ando, R;Hayashi, M;Takami, H;Fujii, T;Takahashi, M;Enomoto, A;
PMID: 35020975 | DOI: 10.1111/pin.13198
Cancer-associated fibroblasts (CAFs), a compartment of the tumor microenvironment, were previously thought to be a uniform cell population that promotes cancer progression. However, recent studies have shown that CAFs are heterogeneous and that there are at least two types of CAFs, that is, cancer-promoting and -restraining CAFs. We previously identified Meflin as a candidate marker of cancer-restraining CAFs (rCAFs) in pancreatic ductal adenocarcinoma (PDAC). The precise nature of rCAFs, however, has remained elusive owing to a lack of understanding of their comprehensive gene signatures. Here, we screened genes whose expression correlated with Meflin in single-cell transcriptomic analyses of human cancers. Among the identified genes, we identified matrix remodeling-associated protein 8 (MXRA8), which encodes a type I transmembrane protein with unknown molecular function. Analysis of MXRA8 expression in human PDAC samples showed that MXRA8 was differentially co-expressed with other CAF markers. Moreover, in patients with PDAC or syngeneic tumors developed in MXRA8-knockout mice, MXRA8 expression did not affect the roles of CAFs in cancer progression, and the biological importance of MXRA8+ CAFs is still unclear. Overall, we identified MXRA8 as a new CAF marker; further studies are needed to determine the relevance of this marker.
UCP1 governs liver extracellular succinate and inflammatory pathogenesis
Mills, EL;Harmon, C;Jedrychowski, MP;Xiao, H;Garrity, R;Tran, NV;Bradshaw, GA;Fu, A;Szpyt, J;Reddy, A;Prendeville, H;Danial, NN;Gygi, SP;Lynch, L;Chouchani, ET;
PMID: 34002097 | DOI: 10.1038/s42255-021-00389-5
Non-alcoholic fatty liver disease (NAFLD), the most prevalent liver pathology worldwide, is intimately linked with obesity and type 2 diabetes. Liver inflammation is a hallmark of NAFLD and is thought to contribute to tissue fibrosis and disease pathogenesis. Uncoupling protein 1 (UCP1) is exclusively expressed in brown and beige adipocytes, and has been extensively studied for its capacity to elevate thermogenesis and reverse obesity. Here we identify an endocrine pathway regulated by UCP1 that antagonizes liver inflammation and pathology, independent of effects on obesity. We show that, without UCP1, brown and beige fat exhibit a diminished capacity to clear succinate from the circulation. Moreover, UCP1KO mice exhibit elevated extracellular succinate in liver tissue that drives inflammation through ligation of its cognate receptor succinate receptor 1 (SUCNR1) in liver-resident stellate cell and macrophage populations. Conversely, increasing brown and beige adipocyte content in mice antagonizes SUCNR1-dependent inflammatory signalling in the liver. We show that this UCP1-succinate-SUCNR1 axis is necessary to regulate liver immune cell infiltration and pathology, and systemic glucose intolerance in an obesogenic environment. As such, the therapeutic use of brown and beige adipocytes and UCP1 extends beyond thermogenesis and may be leveraged to antagonize NAFLD and SUCNR1-dependent liver inflammation.
Cellular and molecular gastroenterology and hepatology
Douchi, D;Yamamura, A;Matsuo, J;Lee, JW;Nuttonmanit, N;Melissa Lim, YH;Suda, K;Shimura, M;Chen, S;Pang, S;Kohu, K;Kaneko, M;Kiyonari, H;Kaneda, A;Yoshida, H;Taniuchi, I;Osato, M;Yang, H;Unno, M;Bok-Yan So, J;Yeoh, KG;Huey Chuang, LS;Bae, SC;Ito, Y;
PMID: 35074568 | DOI: 10.1016/j.jcmgh.2022.01.010
RUNX transcription factors play pivotal roles in embryonic development and neoplasia. We previously identified the single missense mutation R122C in RUNX3 from human gastric cancer. However, how RUNX3R122C mutation disrupts stem cell homeostasis and promotes gastric carcinogenesis remained unclear.To understand the oncogenic nature of this mutation in vivo, we generated the RUNX3R122C knock-in mice. Stomach tissues were harvested, followed by histological and immunofluorescence staining, organoid culture, flow cytometry to isolate gastric corpus isthmus and non-isthmus epithelial cells, and RNA extraction for transcriptomic analysis.The corpus tissue of RUNX3R122C/R122C homozygous mice exhibited a precancerous phenotype such as spasmolytic polypeptide-expressing metaplasia (SPEM). We observed mucous neck cell hyperplasia, massive reduction of pit, parietal, and chief cell populations, as well as a dramatic increase in the number of rapidly proliferating isthmus stem/progenitor cells in the corpus of RUNX3R122C/R122C mice. Transcriptomic analyses of the isolated epithelial cells showed that the cell cycle-related MYC target gene signature was enriched in the corpus epithelial cells of RUNX3R122C/R122C mice compared with the wild-type corpus. Mechanistically, RUNX3R122C mutant protein disrupted the regulation of the restriction point where cells decide to enter either proliferative or quiescent state, thereby driving stem cell expansion and limiting the ability of cells to terminally differentiate.RUNX3R122C missense mutation is associated with the continuous cycling of isthmus stem/progenitor cells, maturation arrest and development of a precancerous state. This work highlights the importance of RUNX3 in prevention of metaplasia and gastric cancer.
Qureshi, HA;Zhu, X;Yang, GH;Steadele, M;Pierce, RH;Futran, ND;Lee, SM;Méndez, E;Houghton, AM;
PMID: 35219073 | DOI: 10.1016/j.oraloncology.2022.105774
The main objective of our study was to understand the impact of immune cell composition and the tumor-reactivity of tumor infiltrating lymphocytes (TIL) in HPV-positive (HPV+) and HPV-negative (HPV-) head and neck squamous cell carcinoma (HNSCC). TIL cultures were established from primary HNSCC tumors, the T cell subsets were phenotypically characterized using flow cytometry, and Interferon (IFN)-γ ELISA assay was used to determine TIL function. NanoString Immune Profiler was used to determine an immune signature by HPV-status, and multiplex immunohistochemistry (MIHC) was used to quantify immune cell distributions and their spatial relationships. Results showed that HPV+ and HPV- HNSCC had similar capacity to expand IFN-γ reactive TIL populations, and these TIL populations had similar characteristics. NanoString analysis revealed increased differential expression of genes related to B cell functions in HPV+ HNSCC, which were significant at a Benjamini-Yekutieli adjusted p-value of < 0.001. MIHC also displayed increased CD8+ T cell and CD19/CD20+ B cell densities in the tumor region of HPV+ HNSCC as opposed to HPV- HNSCC (p < 0.01). Increases in a combined metric of tumor B cell content and stromal plasma cell content was associated with increased progression-free survival in HPV- HNSCC patients treated with immune checkpoint inhibitor therapy (p = 0.03). In summary, TIL populations expanded from HPV+ and HPV- HNSCC displayed similar IFN-γ reactivity. However, we identified a strong B-cell signature present within HPV+ HNSCC, and higher B and plasma cell content associated with improved PFS in HPV- HNSCC patients treated with immune checkpoint inhibitors.
J Neurol Surg B Skull Base
Stepp, WH;Kimple, AJ;Ebert, CS;
| DOI: 10.1055/s-0042-1743610
Introduction: Inverted papillomas (IPs) are rare, benign, sinonasal tumors with the ability to undergo malignant transformation. While rare, they are the most common type of papilloma within the sinonasal cavity and represent up to 5% of primary nasal cavity tumors. There have been many studies attempting to define a causal link between HPV and malignant transformation of IPs with mixed results. Additionally, these tumors have a high recurrence rate, and their malignant transformation potential has spurred significant investigation into their etiology, disease course, and treatment. Prior meta-analyses of HPV-mediated transformation of IPs have suggested a nearly 50% prevalence of HPV in IPSCC and strong bias toward the high-risk virus types, HPV16 and HPV18, in IP malignant transformation. In this study, we have identified a large, retrospective cohort of benign IPs, IP-SCC, and control sinonasal polyp tissues that have been tested for high-risk HPV types to determine the prevalence in both benign and malignant IPs. Methods: A total of 94 IP tumors, 22 IP-SCC, and 13 sinonasal polyps were stained with HPV16/18 RNAscope and imaged with fluorescence to determine HPV status. Formalin-fixed slides were processed via standard antigen retrieval protocols and anti-HPV RNA staining was performed. Imaging was performed via confocal and bright-field microscopy. Results: We demonstrated significant HPV-positivity in IP-SCC versus benign IP tumors (p
International journal of molecular sciences
Capellero, S;Erriquez, J;Battistini, C;Porporato, R;Scotto, G;Borella, F;Di Renzo, MF;Valabrega, G;Olivero, M;
PMID: 35055018 | DOI: 10.3390/ijms23020833
Peritoneal metastases are the leading cause of morbidity and mortality in ovarian cancer. Cancer cells float in peritoneal fluid, named ascites, together with a definitely higher number of non neo-neoplastic cells, as single cells or multicellular aggregates. The aim of this work is to uncover the features that make these aggregates the metastasizing units. Immunofluorescence revealed that aggregates are made almost exclusively of ovarian cancer cells expressing the specific nuclear PAX8 protein. The same cells expressed epithelial and mesenchymal markers, such as EPCAM and αSMA, respectively. Expression of fibronectin further supported a hybrid epithelia-mesenchymal phenotype, that is maintained when aggregates are cultivated and proliferate. Hematopoietic cells as well as macrophages are negligible in the aggregates, while abundant in the ascitic fluid confirming their prominent role in establishing an eco-system necessary for the survival of ovarian cancer cells. Using ovarian cancer cell lines, we show that cells forming 3D structures neo-expressed thoroughly fibronectin and αSMA. Functional assays showed that αSMA and fibronectin are necessary for the compaction and survival of 3D structures. Altogether these data show that metastasizing units display a hybrid phenotype that allows maintenance of the 3D structures and the plasticity necessary for implant and seeding into peritoneal lining.
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.
Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML.
PMID: 29868933 | DOI: 10.1007/s00395-018-0686-x
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3-6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.
Am J Respir Crit Care Med.
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N.
PMID: 30964696 | DOI: 10.1164/rccm.201807-1237OC
Abstract
RATIONALE:
Given the paucity of effective treatments for Idiopathic Pulmonary Fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Transforming growth factor β (TGF-β) is the main pro-fibrotic factor, but its inhibition is associated with severe side effects due to its pleiotropic role.
OBJECTIVES:
We hypothesized that downstream non-coding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well-tolerated.
METHODS:
We investigated the whole non-coding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblast. Differential expression of the long non-coding RNA DNM3OS and its associated miRNAs was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis.
MEASUREMENTS AND MAIN RESULTS:
We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis.
CONCLUSION:
Pharmacological approaches aiming at interfering with DNM3OS may represent new effective therapeutic strategies in IPF.
bioRxiv : the preprint server for biology
Anderson, T;Mo, J;Gagarin, E;Sherwood, D;Blumenkrantz, M;Mao, E;Leon, G;Chen, HJ;Tseng, KC;Fabian, P;Crump, JG;Smeeton, J;
PMID: 36778403 | DOI: 10.1101/2023.02.03.527039
After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain . Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration.Rapid regeneration of the jaw joint ligament in adult zebrafishDedifferentiation of mature ligamentocytes contributes to regenerationscRNAseq reveals dynamic ECM remodeling and immune activation during regenerationRequirement of Legumain for ECM remodeling and ligament healing.