Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (11)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (5) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter

Research area

  • Cancer (6) Apply Cancer filter
  • HPV (4) Apply HPV filter
  • Inflammation (4) Apply Inflammation filter
  • Infectious Disease (3) Apply Infectious Disease filter
  • Infectious (1) Apply Infectious filter
  • Other (1) Apply Other filter
  • psoriatic arthritis (1) Apply psoriatic arthritis filter

Category

  • Publications (11) Apply Publications filter
Prevalence of HPV infection in head and neck carcinomas shows geographical variability: a comparative study from Brazil and Germany

Virchows Archiv (2015): 1-9.

Hauck F, Oliveira-Silva M, Dreyer JH, Ferreira Perrusi VJ, Arcuri RA, Hassan R, Bonvicino CR, Barros MHM, Niedobitek G.
PMID: 25820374 | DOI: 10.1007/s00428-015-1761-4

Rising prevalence rates of high-risk human papillomaviruses (hrHPV) infection in oropharyngeal carcinoma (up to 80 %) have been reported in North America and Scandinavia. We have analysed 424 German and 163 Brazilian head and neck squamous cell carcinomas (HNSCC) from the oral cavity (OSCC), oropharynx (OPSCC) and hypopharynx (HPSCC) using p16 immunohistochemistry, HPV DNA PCR and sequencing, hrHPV DNA in situ hybridisation (ISH) and hrHPV E6/E7 RNA ISH. In the German series, 52/424 cases (12.3 %) were p16-positive/hrHPV-positive (OSCC 3.8 % [10/265], OPSCC 34.4 % [42/122], HPSCC 0 % [0/37]). In addition, there were 9 cases that were p16-positive/hrHPV-negative (5 OPSCC and 4 OSCC). In the Brazilian series, the overall hrHPV DNA prevalence by PCR was 11.0 % ([18/163]; OSCC 6 % [5/83], OPSCC 15.5 % [11/71], HPSCC 22.2 % [2/9]). Ten of these cases were hrHPV-positive/p16-positive. The remaining 8 hrHPV-positive/p16-negative cases were also negative in both ISH assays. Furthermore, 5 p16-positive/hrHPV-negative cases (2 OPSCC and 3 OSCC) were identified. In both series, HPV16 was by far the most common HPV type detected. We confirm that regardless of geographical origin, the highest hrHPV prevalence in HNSCC is observed in oropharyngeal carcinomas. The proportion of HPV-associated OPSCC was substantially higher in the German cohort than in the Brazilian series (34.4 vs. 15.5 %), and in both groups, the prevalence of hrHPV in OPSCC was much lower than in recent reports from North America and Scandinavia. We suggest, therefore, that it may be possible to define areas with high (e.g. USA, Canada, Scandinavia), intermediate (e.g. Germany) and low (e.g. Brazil) prevalences of HPV infection in OPSCC.
Cutaneous lesions in psoriatic arthritis are enriched in chemokine transcriptomic pathways

Arthritis research & therapy

2023 May 02

Johnsson, H;Cole, J;Siebert, S;McInnes, IB;Graham, G;
PMID: 37131254 | DOI: 10.1186/s13075-023-03034-6

Skin from people with psoriasis has been extensively studied and is assumed to be identical to skin from those with psoriatic arthritis (PsA). Chemokines and the CC chemokine scavenger receptor ACKR2 are upregulated in uninvolved psoriasis. ACKR2 has been proposed as a regulator of cutaneous inflammation in psoriasis. The aim of this study was to compare the transcriptome of PsA skin to healthy control (HC) skin and evaluate ACKR2 expression in PsA skin.Full-thickness skin biopsies from HC, lesional and uninvolved skin from participants with PsA were sequenced on NovaSeq 6000. Findings were validated using qPCR and RNAscope.Nine HC and nine paired PsA skin samples were sequenced. PsA uninvolved skin was transcriptionally similar to HC skin, and lesional PsA skin was enriched in epidermal and inflammatory genes. Lesional PsA skin was enriched in chemokine-mediated signalling pathways, but uninvolved skin was not. ACKR2 was upregulated in lesional PsA skin but had unchanged expression in uninvolved compared with HC skin. The expression of ACKR2 was confirmed by qPCR, and RNAscope demonstrated strong expression of ACKR2 in the suprabasal layer of the epidermis in PsA lesions.Chemokines and their receptors are upregulated in lesional PsA skin but relatively unchanged in uninvolved PsA skin. In contrast to previous psoriasis studies, ACKR2 was not upregulated in uninvolved PsA skin. Further understanding of the chemokine system in PsA may help to explain why inflammation spreads from the skin to the joints in some people with psoriasis.
The atypical chemokine receptor 2 limits renal inflammation and fibrosis in murine progressive immune complex glomerulonephritis

Kidney International

2018 Feb 01

Bideak A, Blaut A, Hoppe JM, Müller MB, Federico G, Eltrich N, Gröne HJ, Locati M, Vielhauer V.
PMID: - | DOI: 10.1016/j.kint.2017.11.013

The atypical chemokine receptor 2 (ACKR2), also named D6, regulates local levels of inflammatory chemokines by internalization and degradation. To explore potential anti-inflammatory functions of ACKR2 in glomerulonephritis, we induced autologous nephrotoxic nephritis in C57/BL6 wild-type and Ackr2-deficient mice. Renal ACKR2 expression increased and localized to interstitial lymphatic endothelium during nephritis. At two weeks Ackr2–/–mice developed increased albuminuria and urea levels compared to wild-type mice. Histological analysis revealed increased structural damage in the glomerular and tubulointerstitial compartments within Ackr2−/− kidneys. This correlated with excessive renal leukocyte infiltration of CD4+ T cells and mononuclear phagocytes with increased numbers in the tubulointerstitium but not glomeruli in knockout mice. Expression of inflammatory mediators and especially markers of fibrotic tissue remodeling were increased along with higher levels of ACKR2 inflammatory chemokine ligands like CCL2 in nephritic Ackr2–/– kidneys. In vitro, Ackr2 deficiency in TNF-stimulated tubulointerstitial tissue but not glomeruli increased chemokine levels. These results are in line with ACKR2 expression in interstitial lymphatic endothelial cells, which also assures efflux of activated leukocytes into regional lymph nodes. Consistently, nephritic Ackr2–/– mice showed reduced adaptive cellular immune responses indicated by decreased regional T-cell activation. However, this did not prevent aggravated injury in the kidneys of Ackr2–/– mice with nephrotoxic nephritis due to simultaneously increased tubulointerstitial chemokine levels, leukocyte infiltration and fibrosis. Thus, ACKR2 is important in limiting renal inflammation and fibrotic remodeling in progressive nephrotoxic nephritis. Hence, ACKR2 may be a potential target for therapeutic interventions in immune complex glomerulonephritis.

Morphologic and Molecular Heterogeneity of Cervical Neuroendocrine Neoplasia: A Report of 14 Cases

The American journal of surgical pathology

2022 Sep 05

Ordulu, Z;Mino-Kenudson, M;Young, RH;Van de Vijver, K;Zannoni, GF;Félix, A;Burandt, E;Wong, A;Nardi, V;Oliva, E;
PMID: 36069807 | DOI: 10.1097/PAS.0000000000001943

Neuroendocrine neoplasms (NENs) of the cervix are rare aggressive tumors associated with poor prognosis and only limited treatment options. Although there is some literature on molecular underpinnings of cervical small cell neuroendocrine carcinomas (SCNECs), detailed morphologic and associated molecular characteristics of cervical NENs remains to be elucidated. Herein, 14 NENs (SCNEC: 6, large cell neuroendocrine carcinoma [LCNEC]: 6, neuroendocrine tumor [NET]: 2), including 5 admixed with human papillomavirus (HPV)-associated adenocarcinoma (carcinoma admixed with neuroendocrine carcinoma) were analyzed. All except 3 SCNECs were HPV16/18 positive. TP53 (3) and/or RB1 (4) alterations (3 concurrent) were only seen in SCNECs (4/6) and were enriched in the HPV16/18-negative tumors. The other most common molecular changes in neuroendocrine carcinomas (NECs) overlapping with those reported in the literature for cervical carcinomas involved PI3K/MAPK pathway (4) and MYC (4) and were seen in both SCNECs and LCNECs. In contrast, the 2 NETs lacked any significant alterations. Two LCNECs admixed with adenocarcinoma had enough material to sequence separately each component. In both pathogenic alterations were shared between the 2 components, including ERBB2 amplification in one and an MSH6 mutation with MYC amplification in the other. Overall, these findings suggest that cervical HPV-associated NETs are genomically silent and high-grade NECs (regardless of small or large cell morphology) share molecular pathways with common cervical carcinomas as it has been reported in the endometrium and are different from NECs at other sites. Molecular analysis of these highly malignant neoplasms might inform the clinical management for potential therapeutic targets.
The atypical chemokine receptor 2 limits progressive fibrosis after acute ischemic kidney injury

Am J Pathol.

2018 Nov 16

Lux M, Blaut A, Eltrich N, Bideak A, Müller MB, Hoppe JM, Gröne HJ, Locati M, Vielhauer V.
PMID: 30448408 | DOI: 10.1016/j.ajpath.2018.09.016

Following renal ischemia-reperfusion injury (IRI) resolution of inflammation allows tubular regeneration, whereas ongoing inflammatory injury mediated by infiltrating leukocytes leads to nephron loss and renal fibrosis, typical hallmarks of chronic kidney disease. The atypical chemokine receptor 2 (ACKR2) is a chemokine decoy receptor, that binds and scavenges inflammatory CC-chemokines and reduces local leukocyte accumulation. We hypothesized that ACKR2 limits leukocyte infiltration, inflammation, and fibrotic tissue remodeling after renal IRI, thus preventing progression to chronic kidney disease. Compared to wild-type, Ackr2 deficiency increased CC chemokine ligand 2 levels in tumor necrosis factor-stimulated tubulointerstitial tissue in vitro. In Ackr2-deficient mice with early IRI one or five days after transient renal pedicle clamping tubular injury was similar to wild-type, although accumulation of mononuclear phagocytes increased in postischemic Ackr2-/-kidneys. Regarding long-term outcomes, Ackr2-/- kidneys displayed more tubular injury five weeks after IRI, which was associated with persistently increased renal infiltrates of mononuclear phagocytes, T cells, Ly6Chigh inflammatory macrophages, and inflammation. Moreover, Ackr2 deficiency resulted in substantially aggravated renal fibrosis in Ackr2-/- kidneys five weeks after IRI, as revealed by increased expression of matrix molecules, renal accumulation of αSMA+ myofibroblasts, and bone marrow-derived fibrocytes. ACKR2 plays an important role in limiting persistent inflammation, tubular loss, and renal fibrosis after ischemic acute kidney injury, and thus can prevent progression to chronic renal disease.

Usefulness of high-risk human papillomavirus mRNA silver in situ hybridization diagnostic assay in oropharyngeal squamous cell carcinomas

Pathology, research and practice

2021 Aug 14

Gale, N;Poljak, M;Volavšek, M;Hošnjak, L;Velkavrh, D;Bolha, L;Komloš, KF;Strojan, P;Aničin, A;Zidar, N;
PMID: 34455364 | DOI: 10.1016/j.prp.2021.153585

The transcriptional activity of high-risk human papillomaviruses (HR-HPV) within oropharyngeal squamous cell carcinomas (OPSCC) has been linked to improved survival of patients. HR-HPV mRNA silver in situ hybridization (SISH) was evaluated on a cohort of OPSCC and compared with viral HPV DNA tests and p16 expression. Clinical outcomes of HPV-driven OPSCC and non-HPV related OPSCC were also studied.We evaluated 67 OPSCC and 3 papillomas, obtained from 62 patients, for detection of HR-HPV DNA by PCR tests. The positive samples were additionally studied by the SISH method using three probes of HPV16, HPV18, and HP33, and for p16 expression detected by immunohistochemistry. SISH assays were evaluated for the presence/number and intensity of signals in cancer cells. Prognostic significance of HPV status in our cohort was evaluated with univariate and multivariate statistics.According to the HR-HPV PCR tests, 46 (69%) OPSCC cases were HPV positive, while three papillomas were negative. Of total 46 HPV-positive OPSCCs, 43 cases were also SISH-positive, while p16 overexpression was found in 45 of 46 HPV positive OPSCC cases. In OPSCC specimens, the sensitivity and specificity of the combined SISH probes (HPV16 and 33) were both 100.00%, when compared to HPV PCR. HPV positivity of the tumors appeared significant for predicting progression-free survival, cause specific survival and overall survival in a multivariate setting.The recently developed mRNA SISH methodology can detect HPV-driven OPSCCs without any additional test in 79% of cases. Positive SISH signals enable the visualization of viral transcripts required to recognize clinically relevant HPV infection. However, rare and tiny signals require an experienced pathologist to establish a consensus interpretation of results. The currently applied HR-HPV mRNA SISH analysis may serve as a groundwork for additional studies.
Analysis of lung stromal expression of the atypical chemokine receptor ACKR2 reveals unanticipated expression in murine blood endothelial cells

Eur J Immunol

2020 Feb 29

Hansell CAH, Love S, Pingen M, Wilson GJ, MacLeod M, Graham GJ
PMID: 32114694 | DOI: 10.1002/eji.201948374

Analysis of chemokine receptor, and atypical chemokine receptor, expression is frequently hampered by the lack of availability of high-quality antibodies and the species specificity of those that are available. We have previously described methodology utilizing Alexa-Fluor-labeled chemokine ligands as versatile reagents to detect receptor expression. Previously this has been limited to hematopoietic cells and methodology for assessing expression of receptors on stromal cells has been lacking. Among chemokine receptors, the ones most frequently expressed on stromal cells belong to the atypical chemokine receptor subfamily. These receptors do not signal in the classic sense in response to ligand but scavenge their ligands and degrade them and thus sculpt in vivo chemokine gradients. Here, we demonstrate the ability to use either intratracheal or intravenous, Alexa-Fluor-labeled chemokine administration to detect stromal cell populations expressing the atypical chemokine receptor ACKR2. Using this methodology, we demonstrate, for the first time, expression of ACKR2 on blood endothelial cells. This observation sets the lung aside from other tissues in which ACKR2 is exclusively expressed on lymphatic endothelial cells and suggest unique roles for ACKR2 in the pulmonary environment.
Placental chemokine compartmentalisation: A novel mammalian molecular control mechanism

PLoS Biol.

2019 May 29

Lee KM, Wilson GJ, Pingen M, Fukuoka A, Hansell CAH, Bartolini R, Medina-Ruiz L, Graham GJ.
PMID: 31141500 | DOI: 10.1371/journal.pbio.3000287

Atypical chemokine receptor 2 (ACKR2) is a chemokine-scavenging receptor. ACKR2-/-embryos display a reduction in size of a novel, to our knowledge, embryonic skin macrophage population referred to as 'intermediate' cells. CC chemokine receptor 2 (CCR2)-/-embryos display an identical phenotype, indicating that these cells require CCR2 to enable them to populate embryonic skin. Further analysis revealed that ACKR2-/-embryos have higher circulating concentrations of the CCR2 ligand, CC ligand 2 (CCL2); thus, ACKR2 regulates intraembryonic CCL2 levels. We show that ACKR2 is strongly expressed by trophoblasts and that it blocks movement of inflammatory chemokines, such as CCL2, from the maternal decidua into the embryonic circulation. We propose that trophoblastic ACKR2 is responsible for ensuring chemokine compartmentalisation on the maternal decidua, without which chemokines enter the embryonic circulation, disrupting gradients essential for directed intraembryonic cell migration. Overall, therefore, we describe a novel, to our knowledge, molecular mechanism whereby maternal decidual chemokines can function in a compartmentalised fashion without interfering with intraembryonic leukocyte migration. These data suggest similar functions for other atypical chemokine receptors in the placenta and indicate that defects in such receptors may have unanticipated developmental consequences.

Prevalence of human papillomavirus in head and neck cancers at tertiary care centers in the United States over time

Cancer

2022 Feb 08

Scott-Wittenborn, N;D'Souza, G;Tewari, S;Rooper, L;Troy, T;Drake, V;Bigelow, EO;Windon, MJ;Ryan, WR;Ha, PK;Kiess, AP;Miles, B;Westra, WH;Mydlarz, WK;Eisele, DW;Fakhry, C;
PMID: 35132635 | DOI: 10.1002/cncr.34124

Human papillomavirus (HPV) is responsible for a growing proportion of oropharyngeal squamous cell carcinomas (OPSCCs) among men and White individuals. Whether similar trends apply to women, non-Whites, and non-oropharyngeal squamous cell carcinomas (non-OPSCCs) is unknown.This is a cross-sectional analysis combining 2 multi-institutional case series of incident head and neck squamous cell carcinoma (HNSCC) cases. Incident HNSCCs from 1995 to 2012 were enrolled retrospectively using banked tumor samples and medical record abstraction. Incident HNSCCs from 2013 to 2019 were enrolled prospectively. The prevalence of tumor HPV biomarkers was tested over 3 time periods (1995-2003, 2004-2012, and 2013-2019). Centralized testing was done for p16 immunohistochemistry (p16) and oncogenic HPV in situ hybridization (ISH).A total of 1209 incident cases of HNSCC were included. Prevalence of p16- and ISH-positive tumors increased significantly for oropharynx cancers over time. The majority were positive after 2013 for White patients (p16, 92%; P < .001; ISH 94%; P < .001), Black patients (p16, 72%; P = .021; ISH 67%; P = .011), and Hispanic patients (p16, 100%; P = .04; ISH 100%; P = .013). For women with OPSCC, the prevalence of p16- and ISH-positive tumors increased significantly to 82% (P < .001) and 78% (P = .004), respectively. For non-OPSCCs, there was increased p16 and ISH positivity overall with 24% p16 and 16% ISH positivity in the most recent time period (P < .001 for both).The majority of OPSCCs in US tertiary care centers are now p16 and ISH positive for all sex and race groups. In some populations in the United States, 91% of OPSCCs are now caused by HPV. Few non-OPSCCs are p16 and ISH positive.
Active human papillomavirus involvement in Barrett's dysplasia and oesophageal adenocarcinoma is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway

Int J Cancer.

2017 Jul 19

Rajendra S, Yang T, Xuan W, Sharma P, Pavey D, Soon Lee C, Le S, Collins J, Wang B.
PMID: 28722212 | DOI: 10.1002/ijc.30896

We have previously demonstrated that transcriptionally active high-risk HPV (hr-HPV) is strongly incriminated in Barrett's dysplasia (BD) and oesophageal adenocarcinoma (OAC) using mainly fresh frozen tissue. This study aimed to identify biomarkers of active HPV infection in Barrett's metaplasia, (BM)/BD/OAC by immunohistochemical staining (IHC) of formalin-fixed paraffin embedded (FFPE) tissue for aberrations of p53 and the retinoblastoma (pRb) pathway which are targets for the viral oncoproteins, E6/E7 respectively. Prospectively, BM(n=81)/BD(n=72)/OAC(n=65) FFPE specimens were subjected to IHC staining for pRb, p16INK4A , cyclin D1 , p53 and RNA in-situ hybridization (ISH) for E6/E7 transcripts. HPV DNA was determined via PCR in fresh frozen specimens. Viral load measurement (real-time PCR) and Next Generation Sequencing of TP53 was also performed. Of 218 patients, 56 were HPV DNA positive [HPV16 (n=42), 18 (n=13), 6 (n=1)]. Viral load was low. Transcriptionally active HPV (DNA+ /RNA+ ) was only found in the dysplastic and adenocarcinoma group (n=21). The majority of HPV DNA+ /RNA+ BD/OAC were characterized by p16INK4Ahigh (14/21, 66.7%), pRblow (15/21, 71.4%) and p53low (20/21, 95%) and was significantly different to controls [combination of HPV DNA- /RNA- (n=94) and HPV DNA+ /RNA- cohorts (n=22)]. p53low had the strongest association with DNA+ /RNA+ oesophageal lesions (OR=23.5, 95% CI=2.94-187.8, p=0.0029). Seventeen HPV DNA+ /RNA+BD/OAC identified as p53low, were sequenced and all but one exhibited wild-type status. pRblow /p53low provided the best balance of strength of association (OR=8.0, 95% CI=2.6-25.0, p=0.0003) and sensitivity (71.4%)/specificity (71.6%) for DNA+ /RNA+ BD/OAC. Active HPV involvement in BD/OAC is characterized by wild-type p53 and aberrations of the retinoblastoma protein pathway.

Immunotherapy targeting HPV 16/18 generates potent immune responses in HPV-Associated Head and Neck Cancer

Clin Cancer Res. 2018 Sep 21.

2018 Sep 21

Aggarwal C, Cohen RB, Morrow MP, Kraynak KA, Sylvester AJ, Knoblock DM, Bauml J, Weinstein GS, Lin A, Boyer J, Sakata L, Tan S, Anton A, Dickerson K, Mangrolia D, Vang R, Dallas M, Oyola S, Duff S, Esser MT, Kumar R, Weiner DB, Csiki I, Bagarazzi M.
PMID: 30242022 | DOI: 10.1158/1078-0432.CCR-18-1763

Abstract

PURPOSE:

Clinical responses with programmed death (PD-1) receptor directed antibodies occur in about 20% of patients with advanced head and neck squamous cell cancer (HNSCCa). Viral neoantigens, such as the E6/E7 proteins of HPV16/18 are attractive targets for therapeutic immunization, and offer an immune activation strategy that may be complementary to PD-1 inhibition.

EXPERIMENTAL DESIGN:

We report Phase Ib/II safety, tolerability and immunogenicity results of immunotherapy with MEDI0457 (DNA immunotherapy targeting HPV16/18 E6/E7 with IL-12 encoding plasmids) delivered by electroporation with CELLECTRA® constant current device. Twenty-two patients with locally advanced, p16+ HNSCCa received MEDI0457.

RESULTS:

MEDI0457 was associated with mild injection site reactions but no treatment related grade 3-5 adverse events (AEs). Eighteen of 21 evaluable patients showed elevated antigen specific T cell activity by IFNg ELISpot and persistent cellular responses surpassing 100 SFU/106 PBMC were noted out to one year. Induction of HPV-specific CD8+ T cells was observed. MEDI0457 shifted the CD8+/FoxP3+ ratio in 4/5 post-immunotherapy tumor samples and increased the number of perforin+ immune infiltrates in all five patients. One patient developed metastatic disease and was treated with anti-PD-1 therapy with a rapid and durable complete response. Flow cytometric analyses revealed induction of HPV16 specific PD-1+ CD8+ T cells that were not found prior to MEDI0547 (0% vs. 1.8%).

CONCLUSIONS:

These data demonstrate that MEDI0457 can generate durable HPV16/18 antigen-specific peripheral and tumor immune responses. This approach may be used as a complementary strategy to PD-1/PD-L1 inhibition in HPV-associated HNSCCa to improve therapeutic outcomes.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?