ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Clin Res Dermatol
2018 Aug 10
Chen HH, Wang CS.
PMID: - | DOI: 10.15226/2378-1726/4/3/00161
Ustekinumab is a human monoclonal antibody selectively targeting the shared p40 subunit of interleukin-12 (IL-12) and IL-23. Its efficacy for the treatment of psoriasis has been well documented in previous trials. We report a rare case of a patient who developed Squamous Cell Carcinoma (SCC) of the tongue after the commencement of ustekinumab as the treatment of plaque type psoriasis. To our knowledge, no link between ustekinumab and tongue SCC has been demonstrated before. Our report suggests that ustekinumab may induce the development of oral SCC in predisposed individuals.
Am J Surg Pathol.
2017 Apr 01
Agaimy A, Hartmann A, Antonescu CR, Chiosea SI, El-Mofty SK, Geddert H, Iro H, Lewis JS Jr, Märkl B, Mills SE, Riener MO, Robertson T, Sandison A, Semrau S, Simpson RH, Stelow E, Westra WH, Bishop JA.
PMID: 28291122 | DOI: 10.1097/PAS.0000000000000797
To more fully characterize the clinical and pathologic spectrum of a recently described tumor entity of the sinonasal tract characterized by loss of nuclear expression of SMARCB1 (INI1), we analyzed 39 SMARCB1-deficient sinonasal carcinomas collected from multiple medical centers. The tumors affected 23 males and 16 females with an age range of 19 to 89 years (median, 52). All patients presented with locally advanced disease (T3, n=5; T4, n=27) involving the sinuses (mainly ethmoid) with variable involvement of the nasal cavity. Thirty patients received surgery and/or radiochemotherapy with curative intent. At last follow-up, 56% of patients died of disease 0 to 102 months after diagnosis (median, 15), 2 were alive with disease, and 1 died of an unrelated cause. Only 9 patients (30%) were alive without disease at last follow-up (range, 11 to 115 mo; median, 26). The original diagnosis of retrospectively identified cases was most often sinonasal undifferentiated carcinoma (n=14) and nonkeratinizing/basaloid squamous cell carcinoma (n=5). Histologically, most tumors displayed either a predominantly basaloid (61%) or plasmacytoid/rhabdoid morphology (36%). The plasmacytoid/rhabdoid form consisted of sheets of tumor cells with abundant, eccentrically placed eosinophilic cytoplasm, whereas similar cells were typically rare and singly distributed in the basaloid variant. Glandular differentiation was seen in a few tumors. None of the cases showed squamous differentiation or surface dysplasia. By immunohistochemistry, the tumors were positive for pancytokeratin (97%), CK5 (64%), p63 (55%), and CK7 (48%); and they were negative for NUT (0%). Epstein-Barr virus and high-risk human papillomavirus was not detected by in situ hybridization. Immunohistochemical loss of SMARCB1 (INI1) expression was confirmed for all 39 tumors. Investigation of other proteins in the SWI/SNF complex revealed co-loss of SMARCA2 in 4 cases, but none were SMARCA4 deficient or ARID1A deficient. Of 27 tumors with SMARCB1 fluorescence in situ hybridization analysis, 14 showed homozygous (biallelic) deletions and 7 showed heterozygous (monoallelic) deletions. SMARCB1-deficient sinonasal carcinoma represents an emerging poorly differentiated/undifferentiated sinonasal carcinoma that (1) cannot be better classified as another specific tumor type, (2) has consistent histopathologic findings (albeit with some variability) with varying proportions of plasmacytoid/rhabdoid cells, and (3) demonstrates an aggressive clinical course. This entity should be considered in any difficult-to-classify sinonasal carcinoma, as correct diagnosis will be mandatory for optimizing therapy and for further delineation of this likely underdiagnosed disease.
Virchows Archiv, 1–9.
Dreyer JH, Hauck F, Oliveira-Silva M, Barros MH, Niedobitek G. (2013).
PMID: 23503925 | DOI: 10.1007/s00428-013-1393-5.
Proc Natl Acad Sci U S A. 2018 Dec 12.
2018 Dec 12
Mathieu M, Drelon C, Rodriguez S, Tabbal H, Septier A, Damon-Soubeyrand C, Dumontet T, Berthon A, Sahut-Barnola I, Djari C, Batisse-Lignier M, Pointud JC, Richard D, Kerdivel G, Calméjane MA, Boeva V, Tauveron I, Lefrançois-Martinez AM, Martinez A, Val P.
PMID: 30541888 | DOI: 10.1073/pnas.1809185115
PLoS genetics
2022 Jul 22
Scales, MK;Velez-Delgado, A;Steele, NG;Schrader, HE;Stabnick, AM;Yan, W;Mercado Soto, NM;Nwosu, ZC;Johnson, C;Zhang, Y;Salas-Escabillas, DJ;Menjivar, RE;Maurer, HC;Crawford, HC;Bednar, F;Olive, KP;Pasca di Magliano, M;Allen, BL;
PMID: 35867772 | DOI: 10.1371/journal.pgen.1010315
Nature.
2018 Oct 08
Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S, Peale F, Gould SE, de Sauvage FJ.
PMID: 30297801 | DOI: 10.1038/s41586-018-0596-y
Despite the efficacy of Hedgehog pathway inhibitors in the treatment of basal cell carcinoma (BCC)1, residual disease persists in some patients and may contribute to relapse when treatment is discontinued2. Here, to study the effect of the Smoothened inhibitor vismodegib on tumour clearance, we have used a Ptch1-Trp53 mouse model of BCC3 and found that mice treated with vismodegib harbour quiescent residual tumours that regrow upon cessation of treatment. Profiling experiments revealed that residual BCCs initiate a transcriptional program that closely resembles that of stem cells of the interfollicular epidermis and isthmus, whereas untreated BCCs are more similar to the hair follicle bulge. This cell identity switch was enabled by a mostly permissive chromatin state accompanied by rapid Wnt pathway activation and reprogramming of super enhancers to drive activation of key transcription factors involved in cellular identity. Accordingly, treatment of BCC with both vismodegib and a Wnt pathway inhibitor reduced the residual tumour burden and enhanced differentiation. Our study identifies a resistance mechanism in which tumour cells evade treatment by adopting an alternative identity that does not rely on the original oncogenic driver for survival.
Cell discovery
2022 Nov 01
Peng, J;Li, F;Wang, J;Wang, C;Jiang, Y;Liu, B;He, J;Yuan, K;Pan, C;Lin, M;Zhou, B;Chen, L;Gao, D;Zhao, Y;
PMID: 36316325 | DOI: 10.1038/s41421-022-00474-3
Cell reports
2021 Apr 06
Du, J;Jing, J;Yuan, Y;Feng, J;Han, X;Chen, S;Li, X;Peng, W;Xu, J;Ho, TV;Jiang, X;Chai, Y;
PMID: 33826897 | DOI: 10.1016/j.celrep.2021.108964
Osteoarthritis and cartilage
2022 Sep 20
Han, S;
PMID: 36150676 | DOI: 10.1016/j.joca.2022.09.003
PLoS Genet.
2016 Jul 14
Perdigoto CN, Dauber KL, Bar C, Tsai PC, Valdes VJ, Cohen I, Santoriello FJ, Zhao D, Zheng D, Hsu YC, Ezhkova E.
PMID: 27414999 | DOI: 10.1371/journal.pgen.1006151.
An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signalingpathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required forMerkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel celldifferentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.
Human pathology
2023 Mar 01
Lagarde-Lenon, MS;Aron, M;
PMID: 36894368 | DOI: 10.1016/j.humpath.2023.02.011
Cancer Cell
2018 Jan 27
Eberl M, Mangelberger D, Swanson JB, Verhaegen ME, Harms PW, Frohm ML, Dlugosz AA, Wong SY.
PMID: - | DOI: 10.1016/j.ccell.2017.12.015
Hedgehog (Hh) pathway inhibitors such as vismodegib are highly effective for treating basal cell carcinoma (BCC); however, residual tumor cells frequently persist and regenerate the primary tumor upon drug discontinuation. Here, we show that BCCs are organized into two molecularly and functionally distinct compartments. Whereas interior Hh+/Notch+ suprabasal cells undergo apoptosis in response to vismodegib, peripheral Hh+++/Notch− basal cells survive throughout treatment. Inhibiting Notch specifically promotes tumor persistence without causing drug resistance, while activating Notch is sufficient to regress already established lesions. Altogether, these findings suggest that the three-dimensional architecture of BCCs establishes a natural hierarchy of drug response in the tumor and that this hierarchy can be overcome, for better or worse, by modulating Notch.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com