Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

Your search for "INS" returned results. Search for our Top genes LGR5, vglut2, gad67, brca1

    Refine Probe List

    Content for comparison

    Gene

    • TBD (108) Apply TBD filter
    • HPV E6/E7 (75) Apply HPV E6/E7 filter
    • Lgr5 (61) Apply Lgr5 filter
    • PD-L1 (25) Apply PD-L1 filter
    • HPV-HR18 (20) Apply HPV-HR18 filter
    • Axin2 (19) Apply Axin2 filter
    • HPV (19) Apply HPV filter
    • GLI1 (15) Apply GLI1 filter
    • HER2 (15) Apply HER2 filter
    • (-) Remove FGFR1 filter FGFR1 (13)
    • MALAT1 (12) Apply MALAT1 filter
    • CD68 (11) Apply CD68 filter
    • Ifng (10) Apply Ifng filter
    • MYC (10) Apply MYC filter
    • CXCL10 (9) Apply CXCL10 filter
    • OLFM4 (9) Apply OLFM4 filter
    • AR-V7 (8) Apply AR-V7 filter
    • EBER1 (8) Apply EBER1 filter
    • CD274 (7) Apply CD274 filter
    • ETV1 (7) Apply ETV1 filter
    • GREM1 (7) Apply GREM1 filter
    • HOTAIR (7) Apply HOTAIR filter
    • OLFM4 (7) Apply OLFM4 filter
    • TERT (7) Apply TERT filter
    • HPV HR18 (7) Apply HPV HR18 filter
    • AR (6) Apply AR filter
    • BRCA1 (6) Apply BRCA1 filter
    • CD3E (6) Apply CD3E filter
    • CD4 (6) Apply CD4 filter
    • MET (6) Apply MET filter
    • CSF1 (6) Apply CSF1 filter
    • Ccl2 (6) Apply Ccl2 filter
    • Ptch1 (6) Apply Ptch1 filter
    • FGFR2 (6) Apply FGFR2 filter
    • Vegfa (6) Apply Vegfa filter
    • PDGFRA (6) Apply PDGFRA filter
    • CXCL12 (6) Apply CXCL12 filter
    • HPV18 (6) Apply HPV18 filter
    • Il-6 (6) Apply Il-6 filter
    • CD3 (6) Apply CD3 filter
    • SOX2 (5) Apply SOX2 filter
    • EGFR (5) Apply EGFR filter
    • ESR1 (5) Apply ESR1 filter
    • DUSP6 (5) Apply DUSP6 filter
    • MDM2 (5) Apply MDM2 filter
    • MKI67 (5) Apply MKI67 filter
    • NOTUM (5) Apply NOTUM filter
    • PTEN (5) Apply PTEN filter
    • Cxcl1 (5) Apply Cxcl1 filter
    • HPV16 (5) Apply HPV16 filter

    Product

    • RNAscope 2.0 Assay (6) Apply RNAscope 2.0 Assay filter
    • RNAscope (2) Apply RNAscope filter
    • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
    • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

    Research area

    • (-) Remove Cancer filter Cancer (15)
    • HPV (1) Apply HPV filter
    • Infectious Disease (1) Apply Infectious Disease filter
    • Inflammation (1) Apply Inflammation filter

    Category

    • Publications (15) Apply Publications filter
    Fibroblast Growth Factor Receptor 1 Gene Copy Number and mRNA Expression in Primary Colorectal Cancer and Its Clinicopathologic Correlation

    Pathobiology. 2015 Jun 16;82(2):76-83.

    Kwak Y, Nam SK, Seo AN, Kim DW, Kang SB, Kim WH, Lee HS.
    PMID: 26088290

    Abstract Objectives: Fibroblast growth factor receptor 1 (FGFR1) has been reported to be overexpressed in colorectal cancer (CRC) and suggested to be a therapeutic target. In this study, we investigated FGFR1 expression and amplification in CRC and its correlation with clinicopathologic parameters. Methods:FGFR1 dual-color fluorescence in situ hybridization and mRNA in situ hybridization were performed on tissue array blocks composed of 291 consecutive primary CRCs. Results: Of the 291 CRC cases, FGFR1 gene amplification was found in 11 (3.8%) cases, high FGFR1 polysomy in 4 (1.4%) cases, and FGFR1 gene copy number (GCN) gain (GCN >2) in 77 (26.5%) cases. FGFR1 GCN gain was significantly associated with left-sided location, lymph node metastasis, distant metastasis, and higher TNM stage (p < 0.05). FGFR1 GCN gain also correlated with poor patient survival (p = 0.015). FGFR1 mRNA overexpression (score 3-4) was present in 11.7% (34/291) of the patients and was significantly associated with FGFR1 GCN alteration (Pearson correlation coefficient, r = 0.463; p < 0.001). Conclusion:FGFR1 GCN gain was more frequently found (26.5%) than gene amplification (3.8%) and correlated with aggressive clinical behavior in consecutive CRC patients. FGFR1 GCN alteration was associated with a high FGFR1 mRNA level.
    Expression and Significance of Cytokeratin 7, a Squamocolumnar Junction Marker, in Head and Neck Squamous Cell Carcinoma.

    Head Neck Pathol.

    2017 Dec 12

    Mehrad M, Dupont WD, Plummer WD Jr, Lewis JS Jr.
    PMID: 29235037 | DOI: 10.1007/s12105-017-0874-2

    The favorable features of high-risk human papillomavirus (HPV) in the head and neck are limited to those harboring transcriptionally-active HPV, which occur predominantly in the oropharynx (OP). Factors rendering the OP susceptible to HPV oncogenesis are largely unexplored. The role of cytokeratin 7 (CK7) in predisposition to HPV and cancer in the cervix has been evaluated. However, its significance in the H&N is unknown. CK7 immunohistochemistry was performed on a tissue microarray cohort of OP and non-oropharyngeal (NOP) squamous cell carcinomas (SCC) with known clinical follow-up and HPV E6/7 mRNA status. Expression was graded based on the distribution (1 ≤ 33%, 2 = 33-66%, 3 ≥ 66%) and intensity (1 = weak, 2 = strong) with combined score of ≥ 2 considered positive. Survival analysis was performed. Seventy-four NOPSCCs and 204 OPSCCs were studied. HPV was positive in 2.7% of NOPSCCs and 70.9% of OPSCCs. CK7 was positive in 23.0% of OPSCCs and 14.8% of NOPSCCs (p = 0.2), and in 24.1% of HPV positive versus 17.2% of negative patients (p = 0.2). There was no correlation with age, race, gender, HPV status, histologic type, tumor subsite, treatment, stage, or co-morbidities, and CK7 expression was not significantly associated with overall or disease specific survival. In our series, CK7 is positive in ~ 25% of H&N SCCs, although usually only focally. While CK7 has been suspected to be overexpressed selectively in HPV-related OPSCCs due to their origination from tonsillar crypt epithelium, we did not find any significant difference by anatomic H&N subsite, nor by HPV status, for its expression and found no association with patient survival.

    Fibroblast growth factor receptor 1 as a putative therapy target in colorectal cancer.

    Digestion. 88(3):172–181.

    Göke F, Göke A, von Mässenhausen A, Franzen A, Sharma R, Kirsten R, Böhm D, Kristiansen G, Stenzinger A, Wynes M, Hirsch FR, Weichert W, Heasley L, Buettner R, Perner S (2013).
    PMID: 24135816 | DOI: 10.1159/000355018

    BACKGROUND/AIMS: Resembling a potential therapeutic drug target, fibroblast growth factor receptor 1 (FGFR1) amplification and expression was assessed in 515 human colorectal cancer (CRC) tissue samples, lymph node metastases and CRC cell lines. METHODS: FGFR1 amplification status was determined using fluorescence in situ hybridization. Additionally, we assessed protein levels employing Western blots and immunohistochemistry. The FGFR1 mRNA localization was analyzed using mRNA in situ hybridization. Functional studies employed the FGFR inhibitor NVP-BGJ398. RESULTS: Of 454 primary CRCs, 24 displayed FGFR1 amplification. 92/94 lymph node metastases presented the same amplification status as the primary tumor. Of 99 investigated tumors, 18 revealed membranous activated pFGFR1 protein. FGFR1 mRNA levels were independent of the amplification status or pFGFR1 protein occurrence. In vitro, a strong antiproliferative effect of NVP-BGJ398 could be detected in cell lines exhibiting high FGFR1 protein. CONCLUSION: FGFR1 is a potential therapeutic target in a subset of CRC. FGFR1 protein is likely to represent a central factor limiting the efficacy of FGFR inhibitors. The lack of correlation between its evaluation at genetic/mRNA level and its protein occurrence indicates that the assessment of the receptor at an immunohistochemical level most likely represents a suitable way to assess FGFR1 as a predictive biomarker for patient selection in future clinical trials.
    Comparison of Fibroblast Growth-factor Receptor Gene Alterations at the DNA versus Messenger RNA Level in Advanced Urothelial Cancer: Insights for Clinical Research.

    Eur Urol Focus.

    2017 Aug 27

    Necchi A, Raggi D, Volpi CC, Giannatempo P, Colecchia M, Gloghini A.
    PMID: 28855072 | DOI: 10.1016/j.euf.2017.08.002

    Pan-fibroblast growth-factor receptor (FGFR) inhibitors hold promise in FGFR-altered patients, but such alterations are rare in advanced urothelial carcinoma. In order to assess whether we may increase the number of eligible patients by using different molecular techniques for detecting alterations, we pooled the results of the centralised FGFR mutation/translocation assays that were performed in Clinical Laboratory Improvement Amendments-certified laboratories within multiple phase 2 trials. At our centre, the same tissue blocks were used to analyse FGFR1-3 messenger RNA expression through messenger RNA in situ hybridisation (ISH; RNAscope 2.5 assay). From October 2016 to March 2017, 52 cases were analysed. Seventeen patients (32.7%) had an upper tract primary tumour. Ten patients (19.2%) had FGFR DNA alterations. Twenty-nine (55.8%) had positive ISH analysis: N=17 score 3, N=12 score 4. Of note, concordance between the two tests was obtained in seven out of 10 patients. Sixty percent of mutated patients had an upper tract primary tumour versus 31% of ISH-positive patients.

    PATIENT SUMMARY:

    We found three-fold higher frequency of fibroblast growth-factor receptor alterations at the RNA versus DNA level in advanced urothelial carcinoma, with a different distribution according to the method used and the site of the primary tumour. The evaluation of the therapeutic response to pan-fibroblast growth-factor receptor inhibitors according to the method of assessment is warranted.

    Rationale Efficacy and Safety Evidence of Lenvatinib and Pembrolizumab Association in Anaplastic Thyroid Carcinoma

    Current oncology (Toronto, Ont.)

    2022 Oct 14

    Boudin, L;Morvan, JB;Thariat, J;Métivier, D;Marcy, PY;Delarbre, D;
    PMID: 36290887 | DOI: 10.3390/curroncol29100610

    Anaplastic thyroid carcinoma (ATC) are highly aggressive malignant tumors with poor overall prognosis despite multimodal therapy. As ATC are extremely rare, no randomized controlled study has been published for metastatic disease. Thyrosine kinase inhibitors, especially lenvatinib and immune checkpoint inhibitors such as pembrolizumab, are emerging drugs for ATC. Few studies have reported the efficacity of pembrolizumab and lenvatinib association, resulting in its frequent off-label use. In this review, we discuss rationale efficacy and safety evidence for the association of lenvatinib and pembrolizumab in ATC. First, we discuss preclinical rationale for pembrolizumab monotherapy, lenvatinib monotherapy and synergistic action of pembrolizumab and lenvatinib in the metastatic setting. We also discuss clinical evidence for immunotherapy and pembrolizumab in ATC through the analysis of studies evaluating immunotherapy, lenvatinib and pembrolizumab lenvatinib association in ATC. In addition, we discuss the safety of this association and potential predictive biomarkers of efficiency.
    Nonamplified FGFR1 is a growth driver in malignant pleural mesothelioma.

    Mol Cancer Res. 2014 Oct;12(10):1460-9.

    Marek LA, Hinz TK, von Mässenhausen A, Olszewski KA, Kleczko EK, Boehm D, Weiser-Evans MC, Nemenoff RA, Hoffmann H, Warth A, Gozgit JM, Perner S, Heasley LE.
    PMID: 25686826

    Abstract Malignant pleural mesothelioma (MPM) is associated with asbestos exposure and is a cancer that has not been significantly affected by small molecule-based targeted therapeutics. Previously, we demonstrated the existence of functional subsets of lung cancer and head and neck squamous cell carcinoma (HNSCC) cell lines in which fibroblast growth factor receptor (FGFR) autocrine signaling functions as a nonmutated growth pathway. In a panel of pleural mesothelioma cell lines, FGFR1 and FGF2 were coexpressed in three of seven cell lines and were significantly associated with sensitivity to the FGFR-active tyrosine kinase inhibitor (TKI), ponatinib, both in vitro and in vivo using orthotopically propagated xenografts. Furthermore, RNAi-mediated silencing confirmed the requirement for FGFR1 in specific mesothelioma cells and sensitivity to the FGF ligand trap, FP-1039, validated the requirement for autocrine FGFs. None of the FGFR1-dependent mesothelioma cells exhibited increased FGFR1 gene copy number, based on a FISH assay, indicating that increased FGFR1 transcript and protein expression were not mediated by gene amplification. Elevated FGFR1 mRNA was detected in a subset of primary MPM clinical specimens and like MPM cells; none harbored increased FGFR1 gene copy number. These results indicate that autocrine signaling through FGFR1 represents a targetable therapeutic pathway in MPM and that biomarkers distinct from increased FGFR1 gene copy number such as FGFR1 mRNA would be required to identify patients with MPM bearing tumors driven by FGFR1 activity. IMPLICATIONS: FGFR1 is a viable therapeutic target in a subset of MPMs, but FGFR TKI-responsive tumors will need to be selected by a biomarker distinct from increased FGFR1 gene copy number, possibly FGFR1 mRNA or protein levels.
    FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale

    Frontiers in endocrinology

    2021 Aug 12

    Adam, P;Kircher, S;Sbiera, I;Koehler, VF;Berg, E;Knösel, T;Sandner, B;Fenske, WK;Bläker, H;Smaxwil, C;Zielke, A;Sipos, B;Allelein, S;Schott, M;Dierks, C;Spitzweg, C;Fassnacht, M;Kroiss, M;
    PMID: 34475850 | DOI: 10.3389/fendo.2021.712107

    Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising.Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable.PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%; p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.
    Fibroblast Growth Factor Receptor 1 and Related Ligands in Small-Cell Lung Cancer.

    J Thorac Oncol. 2015 May 27.

    Zhang L, Yu H, Badzio A, Boyle TA, Schildhaus HU, Lu X, Dziadziuszko R, Jassem J, Varella-Garcia M, Heasley LE, Kowalewski AA, Ellison K, Chen G, Zhou C, Hirsch FR.
    PMID: 26016563 | DOI: 10.1080/15476286.2015.1053687

    Introduction: Small-cell lung cancer (SCLC) accounts for 15% of all lung cancers and has been understudied for novel therapies. Signaling through fibroblast growth factors (FGF2, FGF9) and their high-affinity receptor has recently emerged as a contributing factor in the pathogenesis and progression of non-small-cell lung cancer. In this study, we evaluated fibroblast growth factor receptor 1 (FGFR1) and ligand expression in primary SCLC samples. Methods: FGFR1 protein expression, messenger RNA (mRNA) levels, and gene copy number were determined by immunohistochemistry (IHC), mRNA in situ hybridization, and silver in situ hybridization, respectively, in primary tumors from 90 patients with SCLC. Protein and mRNA expression of the FGF2 and FGF9 ligands were determined by IHC and mRNA in situ hybridization, respectively. In addition, a second cohort of 24 SCLC biopsy samples with known FGFR1 amplification by fluorescence in situ hybridization was assessed for FGFR1 protein expression by IHC. Spearman correlation analysis was performed to evaluate associations of FGFR1, FGF2 and FGF9 protein levels, respective mRNA levels, and FGFR1 gene copy number. Results: FGFR1 protein expression by IHC demonstrated a significant correlation with FGFR1 mRNA levels (p < 0.0001) and FGFR1 gene copy number (p = 0.03). The prevalence of FGFR1 mRNA positivity was 19.7%. FGFR1 mRNA expression correlated with both FGF2 (p = 0.0001) and FGF9 (p = 0.002) mRNA levels, as well as with FGF2 (p = 0.01) and FGF9 (p = 0.001) protein levels. There was no significant association between FGFR1 and ligands with clinical characteristics or prognosis. In the second cohort of specimens with known FGFR1 amplification by fluorescence in situ hybridization, 23 of 24 had adequate tumor by IHC, and 73.9% (17 of 23) were positive for FGFR1 protein expression. Conclusions: A subset of SCLCs is characterized by potentially activated FGF/FGFR1 pathways, as evidenced by positive FGF2, FGF9, and FGFR1 protein and/or mRNA expression. FGFR1 protein expression is correlated with FGFR1 mRNA levels and FGFR1 gene copy number. Combined analysis of FGFR1 and ligand expression may allow selection of patients with SCLC to FGFR1 inhibitor therapy.
    FGFR1 expression levels predict BGJ398-sensitivity of FGFR1-dependent head and neck squamous cell cancers

    Clin Cancer Res. 2015 May 26.

    Göke F, Franzen A, Hinz TK, Marek LA, Yoon P, Sharma R, Bode M, von Mässenhausen A, Lankat-Buttgereit B, Göke A, Golletz C, Kirsten R, Boehm D, Vogel W, Kleczko EK, Eagles J, Hirsch FR, Van Bremen T, Bootz F, Schröck A, Kim J, Tan AC, Jimeno A, Heasle
    PMID: 26027736 | DOI: 10.1038/ncomms8222.

    Background: FGFR1 copy number gain (CNG) occurs in head and neck squamous cell cancers (HNSCC) and is used for patient selection in FGFR-specific inhibitor clinical trials. This study explores FGFR1 mRNA and protein levels in HNSCC cell lines, primary tumors and patient-derived xenografts (PDXs) as predictors of sensitivity to the FGFR inhibitor, NVP-BGJ398. Methods: FGFR1 status, expression levels and BGJ398 sensitive growth were measured in 12 HNSCC cell lines. Primary HNSCCs (n=353) were assessed for FGFR1 CNG and mRNA levels and HNSCC TCGA data were interrogated as an independent sample set. HNSCC PDXs (n=39) were submitted to FGFR1 copy number detection and mRNA assays to identify putative FGFR1-dependent tumors. Results: Cell line sensitivity to BGJ398 is associated with FGFR1 mRNA and protein levels, not FGFR1 CNG. 31% of primary HNSCC tumors expressed FGFR1 mRNA, 18% exhibited FGFR1 CNG, 35% of amplified tumors were also positive for FGFR1 mRNA. This relationship was confirmed with the TCGA dataset. Using high FGFR1 mRNA for selection, 2 HNSCC PDXs were identified, one of which also exhibited FGFR1 CNG. The non-amplified tumor with high mRNA levels exhibited in vivo sensitivity to BGJ398. Conclusion: FGFR1 expression associates with BGJ398 sensitivity in HNSCC cell lines and predicts TKI sensitivity in PDXs. Our results support FGFR1 mRNA or protein expression, rather than FGFR1 CNG as a predictive biomarker for the response to FGFR inhibitors in a subset of patients suffering from HNSCC.

    Carcinoma of the Urethra

    Hum Pathol.

    2017 Aug 18

    Zhang M, Adeniran AJ, Vikram R, Tamboli P, Pettaway C, Bondaruk J, Liu J, Baggerly K, Czerniak B.
    PMID: 28827100 | DOI: 10.1016/j.humpath.2017.08.006

    Primary carcinomas of the urethra are rare and poorly understood lesions, hence their clinical and pathologic spectrum is not completely defined. We analyzed a series of 130 primary urethral tumors and classified 106 of them as primary urethral carcinomas. The age at diagnosis of patients with primary urethral carcinomas ranged from 42-97years (mean: 69.4yrs.; median: 70yrs). There were 73 males and 33 female patients with a ratio of 2.2:1. In male patients the tumors most frequently developed in the bulbous-membranous segment of the urethra. In female patients the entire length of the urethra was typically involved. Microscopically, they were poorly differentiated carcinoma with hybrid squamous and urothelial features and developed from precursor intraepithelial conditions such as dysplasia and carcinoma in situ, which were frequently present in the adjacent urethral mucosa. High risk HPV infection could be documented in 31.6% of these tumors. Follow-up information was available for 95 patients. Twenty-three patients died of the disease with a mean and median survival of 39 and 21months respectively. Urethral carcinomas are aggressive tumors with high propensity for regional and distant metastases with mean and median survival of 39 and 21months respectively. Our observations have important implications for the management of patients with primary carcinoma of the urethra by defining them as a unique entity linked to HPV infection.

    FGFR3 mRNA overexpression defines a subset of oligometastatic colorectal cancers with worse prognosis

    Oncotarget.

    2018 Aug 14

    Fromme JE, Schmitz K, Wachter A, Grzelinski M, Zielinski D, Koppel C, Conradi LC, Homayounfar K, Hugo T, Hugo S, Lukat L, Rüschoff J, Ströbel P, Ghadimi M, Beißbarth T, Reuter-Jessen K, Bleckmann A, Schildhaus HU.
    PMID: 30181810 | DOI: 10.18632/oncotarget.25941

    Abstract

    OBJECTIVES:

    Metastatic colorectal cancer (CRC) remains a leading cause of cancer related deaths. Patients with oligometastatic liver disease represent a clinical subgroup with heterogeneous course. Until now, biomarkers to characterize outcome and therapeutic options have not been fully established.

    METHODS:

    We investigated the prevalence of FGFR alterations in a total of 140 primary colorectal tumors and 63 liver metastases of 55 oligometastatic CRC patients. FGF receptors (FGFR1-4) and their ligands (FGF3, 4 and 19) were analyzed for gene amplifications and rearrangements as well as for RNA overexpression in situ. Results were correlated with clinico-pathologic data and molecular subtypes.

    RESULTS:

    Primary tumors showed FGFR1 (6.3%) and FGF3,4,19 (2.2%) amplifications as well as FGFR1 (10.1%), FGFR2 (5.5%) and FGFR3 (16.2%) overexpression. In metastases, we observed FGFR1 amplifications (4.8%) as well as FGFR1 (8.5%) and FGFR3 (14.9%) overexpression. Neither FGFR2-4 amplifications nor gene rearrangements were observed. FGFR3 overexpression was significantly associated with shorter overall survival in metastases (mOS 19.9 vs. 47.4 months, HR=3.14, p=0.0152), but not in primary CRC (HR=1.01, p=0.985). Although rare, also FGFR1 amplification was indicative of worse outcome (mOS 12.6 vs. 47.4 months, HR=8.83, p=0.00111).

    CONCLUSIONS:

    We provide the so far most comprehensive analysis of FGFR alterations in primary and metastatic CRC. We describe FGFR3 overexpression in 15% of CRC patients with oligometastatic liver disease as a prognosticator for poor outcome. Recently FGFR3 overexpression has been shown to be a potential therapeutic target. Therefore, we suggest focusing on this subgroup in upcoming clinical trials with FGFR-targeted therapies.

    FGFR1 mRNA and Protein Expression, not Gene Copy Number, Predict FGFR TKI Sensitivity Across All Lung Cancer Histologies

    Clin Cancer Res. 2014 Apr 25.

    Wynes MW, Hinz TK, Gao D, Martini M, Marek L, Ware KE, Edwards MG, Bohm D, Perner S, Helfrich BA, Dziadziuszko R, Jassem J, Wojtylak S, Sejda A, Gozgit JM, Bunn Jr PA, Camidge DR, Tan AC, Hirsch FR, Heasley LE (2014)
    PMID: 24771645

    Purpose: FGFR1 gene copy number (GCN) is being evaluated as a biomarker for FGFR tyrosine kinase inhibitor (TKI) response in squamous-cell lung cancers (SCC). The exclusive use of FGFR1 GCN for predicting FGFR TKI sensitivity assumes increased GCN is the only mechanism for biologically-relevant increases in FGFR1 signaling. Herein, we tested whether FGFR1 mRNA and protein expression may serve as better biomarkers of FGFR TKI sensitivity in lung cancer. Experimental Design: Histologically diverse lung cancer cell lines were submitted to assays for ponatinib sensitivity, a potent FGFR TKI. A tissue microarray comprised of resected lung tumors was submitted to FGFR1 GCN and mRNA analyses and the results were validated with TCGA lung cancer data. Results: 14/58 cell lines exhibited ponatinib sensitivity (IC50 values < 50 nM) that correlated with FGFR1 mRNA and protein expression, but not with FGFR1 GCN or histology. Moreover, ponatinib sensitivity associated with mRNA expression of the ligands, FGF2 and FGF9. In resected tumors, 22% of adenocarcinomas and 28% of SCCs expressed high FGFR1 mRNA. Importantly, only 46% of SCCs with increased FGFR1 GCN expressed high mRNA. Lung cancer TCGA data validated these findings and unveiled overlap of FGFR1 mRNA positivity with KRAS and PIK3CA mutations. Conclusions: FGFR1 dependency is frequent across various lung cancer histologies and FGFR1 mRNA may serve as a better biomarker of FGFR TKI response in lung cancer than FGFR1 GCN. The study provides important and timely insight into clinical testing of FGFR TKIs in lung cancer and other solid tumor types.

    Pages

    • 1
    • 2
    • next ›
    • last »
    X
    Description
    sense
    Example: Hs-LAG3-sense
    Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
    Intron#
    Example: Mm-Htt-intron2
    Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
    Pool/Pan
    Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
    A mixture of multiple probe sets targeting multiple genes or transcripts
    No-XSp
    Example: Hs-PDGFB-No-XMm
    Does not cross detect with the species (Sp)
    XSp
    Example: Rn-Pde9a-XMm
    designed to cross detect with the species (Sp)
    O#
    Example: Mm-Islr-O1
    Alternative design targeting different regions of the same transcript or isoforms
    CDS
    Example: Hs-SLC31A-CDS
    Probe targets the protein-coding sequence only
    EnEmProbe targets exons n and m
    En-EmProbe targets region from exon n to exon m
    Retired Nomenclature
    tvn
    Example: Hs-LEPR-tv1
    Designed to target transcript variant n
    ORF
    Example: Hs-ACVRL1-ORF
    Probe targets open reading frame
    UTR
    Example: Hs-HTT-UTR-C3
    Probe targets the untranslated region (non-protein-coding region) only
    5UTR
    Example: Hs-GNRHR-5UTR
    Probe targets the 5' untranslated region only
    3UTR
    Example: Rn-Npy1r-3UTR
    Probe targets the 3' untranslated region only
    Pan
    Example: Pool
    A mixture of multiple probe sets targeting multiple genes or transcripts

    Enabling research, drug development (CDx) and diagnostics

    Contact Us
    • Toll-free in the US and Canada
    • +1877 576-3636
    • 
    • 
    • 
    Company
    • Overview
    • Leadership
    • Careers
    • Distributors
    • Quality
    • News & Events
    • Webinars
    • Patents
    Products
    • RNAscope or BaseScope
    • Target Probes
    • Controls
    • Manual assays
    • Automated Assays
    • Accessories
    • Software
    • How to Order
    Research
    • Popular Applications
    • Cancer
    • Viral
    • Pathways
    • Neuroscience
    • Other Applications
    • RNA & Protein
    • Customer Innovations
    • Animal Models
    Technology
    • Overview
    • RNA Detection
    • Spotlight Interviews
    • Publications & Guides
    Assay Services
    • Our Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    • Your Benefits
    • How to Order
    Diagnostics
    • Diagnostics
    • Companion Diagnostics
    Support
    • Getting started
    • Contact Support
    • Troubleshooting Guide
    • FAQs
    • Manuals, SDS & Inserts
    • Downloads
    • Webinars
    • Training Videos

    Visit Bio-Techne and its other brands

    • bio-technie
    • protein
    • bio-spacific
    • rd
    • novus
    • tocris
    © 2025 Advanced Cell Diagnostics, Inc.
    • Terms and Conditions of Sale
    • Privacy Policy
    • Security
    • Email Preferences
    • 
    • 
    • 

    For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

     

    Contact Us / Request a Quote
    Download Manuals
    Request a PAS Project Consultation
    Order online at
    bio-techne.com
    OK
    X
    Contact Us

    Complete one of the three forms below and we will get back to you.

    For Quote Requests, please provide more details in the Contact Sales form below

    • Contact Sales
    • Contact Support
    • Contact Services
    • Offices

    Advanced Cell Diagnostics

    Our new headquarters office starting May 2016:

    7707 Gateway Blvd.  
    Newark, CA 94560
    Toll Free: 1 (877) 576-3636
    Phone: (510) 576-8800
    Fax: (510) 576-8798

     

    Bio-Techne

    19 Barton Lane  
    Abingdon Science Park
    Abingdon
    OX14 3NB
    United Kingdom
    Phone 2: +44 1235 529449
    Fax: +44 1235 533420

     

    Advanced Cell Diagnostics China

    20F, Tower 3,
    Raffles City Changning Office,
    1193 Changning Road, Shanghai 200051

    021-52293200
    info.cn@bio-techne.com
    Web: www.acdbio.com/cn

    For general information: Info.ACD@bio-techne.com
    For place an order: order.ACD@bio-techne.com
    For product support: support.ACD@bio-techne.com
    For career opportunities: hr.ACD@bio-techne.com

    See Distributors
    ×

    You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

    OK Cancel
    Need help?

    How can we help you?