ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Mol Imaging Biol.
2017 Sep 12
Kuszpit K, Hollidge BS, Zeng X, Stafford RG, Daye S, Zhang X, Basuli F, Golden JW, Swenson RE, Smith DR, Bocan TM.
PMID: 28900831 | DOI: 10.1007/s11307-017-1118-2
Abstract
PURPOSE:
The association of Zika virus (ZIKV) infection and development of neurological sequelae require a better understanding of the pathogenic mechanisms causing severe disease. The purpose of this study was to evaluate the ability and sensitivity of positron emission tomography (PET) imaging using [18F]DPA-714, a translocator protein (TSPO) 18 kDa radioligand, to detect and quantify neuroinflammation in ZIKV-infected mice.
PROCEDURES:
We assessed ZIKV-induced pathogenesis in wild-type C57BL/6 mice administered an antibody to inhibit type I interferon (IFN) signaling. [18F]DPA-714 PET imaging was performed on days 3, 6, and 10 post-infection (PI), and tissues were subsequently processed for histological evaluation, quantification of microgliosis, and detection of viral RNA by in situ hybridization (ISH).
RESULTS:
In susceptible ZIKV-infected mice, viral titers in the brain increased from days 3 to 10 PI. Over this span, these mice showed a two- to sixfold increase in global brain neuroinflammation using [18F]DPA-714 PET imaging despite limited, regional detection of viral RNA. No measurable increase in ionized calcium binding adaptor molecule 1 (Iba-1) expression was noted at day 3 PI; however, there was a modest increase at day 6 PI and an approximately significant fourfold increase in Iba-1 expression at day 10 PI in the susceptible ZIKV-infected group relative to controls.
CONCLUSIONS:
The results of the current study demonstrate that global neuroinflammation plays a significant role in the progression of ZIKV infection and that [18F]DPA-714 PET imaging is a sensitive tool relative to histology for the detection of neuroinflammation. [18F]DPA-714 PET imaging may be useful in dynamically characterizing the pathology associated with neurotropic viruses and the evaluation of therapeutics being developed for treatment of infectious diseases.
Ebiom
2017 Sep 21
Darbellay J, Cox B, Lai K, Delgado-Ortega M, Wheler C, Wilson D, Walker S, Starrak G, Hockley D, Huang Y, Mutwiri G, Potter A, Gilmour M, Safronetz D, Gerdts V, Karniychuk U.
PMID: - | DOI: 10.1016/j.ebiom.2017.09.021
Outcomes of Zika virus (ZIKV) infection in pregnant women vary from the birth of asymptomatic offspring to abnormal development and severe brain lesions in fetuses and infants. There are concerns that offspring affected in utero and born without apparent symptoms may develop mental illnesses. Therefore, animal models are important to test interventions against in utero infection and health sequelae in symptomatic and likely more widespread asymptomatic offspring. To partially reproduce in utero infection in humans, we directly inoculated selected porcine conceptuses with ZIKV. Inoculation resulted in rapid trans-fetal infections, persistent infection in conceptuses, molecular pathology in fetal brains, fetal antibody and type I interferon responses. Offspring infected in utero showed ZIKV in their fetal membranes collected after birth. Some in utero affected piglets were small, depressed, had undersized brains, showed seizures and potentially increased activity. Our data suggest that porcine model of persistent in utero ZIKV infection has a strong potential for translational research and can be used to test therapeutic interventions in vivo.
Cell Rep.
2017 Apr 18
Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R, Gaitsch HF, Parnell LA, Cao B, Mysorekar IU, Rothlin CV, Fikrig E, Diamond MS, Iwasaki A.
PMID: 28423319 | DOI: 10.1016/j.celrep.2017.03.058
Tyro3, Axl, and Mertk (TAM) receptors are candidate entry receptors for infection with the Zika virus (ZIKV), an emerging flavivirus of global public health concern. To investigate the requirement of TAM receptors for ZIKV infection, we used several routes of viral inoculation and compared viral replication in wild-type versus Axl-/-, Mertk-/-, Axl-/-Mertk-/-, and Axl-/-Tyro3-/- mice in various organs. Pregnant and non-pregnant mice treated with interferon-α-receptor (IFNAR)-blocking (MAR1-5A3) antibody and infected subcutaneously with ZIKV showed no reliance on TAMs for infection. In the absence of IFNAR-blocking antibody, adult female mice challenged intravaginally with ZIKV showed no difference in mucosal viral titers. Similarly, in young mice that were infected with ZIKV intracranially or intraperitoneally, ZIKV replication occurred in the absence of TAM receptors, and no differences in cell tropism were observed. These findings indicate that, in mice, TAM receptors are not required for ZIKV entry and infection.
Neuron
2017 May 03
Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD.
PMID: 28472653 | DOI: 10.1016/j.neuron.2017.04.018
During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.
Sci Transl Med.
2018 Apr 04
Mavigner M, Raper J, Kovacs-Balint Z, Gumber S, O’Neal JT, Bhaumik SK, Zhang X, Habib J, Mattingly C, McDonald CE, Avanzato V, Burke MW, Magnani DM, Bailey VK, Watkins DI, Vanderford TH, Fair D, Earl E, Feczko E, Styner M, Jean SM, Cohen JK, Silvestri G,
PMID: 29618564 | DOI: 10.1126/scitranslmed.aao6975
The Zika virus (ZIKV) epidemic is associated with fetal brain lesions and other serious birth defects classified as congenital ZIKV syndrome. Postnatal ZIKV infection in infants and children has been reported; however, data on brain anatomy, function, and behavioral outcomes following infection are absent. We show that postnatal ZIKV infection of infant rhesus macaques (RMs) results in persistent structural and functional alterations of the central nervous system compared to age-matched controls. We demonstrate ZIKV lymphoid tropism and neurotropism in infant RMs and histopathologic abnormalities in the peripheral and central nervous systems including inflammatory infiltrates, astrogliosis, and Wallerian degeneration. Structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) show persistent enlargement of lateral ventricles, maturational changes in specific brain regions, and altered functional connectivity (FC) between brain areas involved in emotional behavior and arousal functions, including weakened amygdala-hippocampal connectivity in two of two ZIKV-infected infant RMs several months after clearance of ZIKV RNA from peripheral blood. ZIKV infection also results in distinct alterations in the species-typical emotional reactivity to acute stress, which were predicted by the weak amygdala-hippocampal FC. We demonstrate that postnatal ZIKV infection of infants in this model affects neurodevelopment, suggesting that long-term clinical monitoring of pediatric cases is warranted.
Nat Med.
2016 Oct 03
Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D, Schroeder LT, Omage R, Best K, Luo M, Hraber PT, Andersen-Elyard H, Ojeda EF, Huang S, Vanlandingham DL, Higgs S, Perelson AS, Estes JD, Safronetz D, Lewis MG, Whitney JB.
PMID: 27694931 | DOI: 10.1038/nm.4206
Infection with Zika virus has been associated with serious neurological complications and fetal abnormalities. However, the dynamics of viral infection, replication and shedding are poorly understood. Here we show that both rhesus and cynomolgus macaques are highly susceptible to infection by lineages of Zika virus that are closely related to, or are currently circulating in, the Americas. After subcutaneous viral inoculation, viral RNA was detected in blood plasma as early as 1 d after infection. Viral RNA was also detected in saliva, urine, cerebrospinal fluid (CSF) and semen, but transiently in vaginal secretions. Although viral RNA during primary infection was cleared from blood plasma and urine within 10 d, viral RNA was detectable in saliva and seminal fluids until the end of the study, 3 weeks after the resolution of viremia in the blood. The control of primary Zika virus infection in the blood was correlated with rapid innate and adaptive immune responses. We also identified Zika RNA in tissues, including the brain and male and female reproductive tissues, during early and late stages of infection. Re-infection of six animals 45 d after primary infection with a heterologous strain resulted in complete protection, which suggests that primary Zika virus infection elicits protective immunity. Early invasion of Zika virus into the nervous system of healthy animals and the extent and duration of shedding in saliva and semen underscore possible concern for additional neurologic complications and nonarthropod-mediated transmission in humans.
J Immunol.
2017 Mar 22
Winkler CW, Myers LM, Woods TA, Messer RJ, Carmody AB, McNally KL, Scott DP, Hasenkrug KJ, Best SM, Peterson KE.
PMID: 28330900 | DOI: 10.4049/jimmunol.1601949
The recent association between Zika virus (ZIKV) and neurologic complications, including Guillain-Barré syndrome in adults and CNS abnormalities in fetuses, highlights the importance in understanding the immunological mechanisms controlling this emerging infection. Studies have indicated that ZIKV evades the human type I IFN response, suggesting a role for the adaptive immune response in resolving infection. However, the inability of ZIKV to antagonize the mouse IFN response renders the virus highly susceptible to circulating IFN in murine models. Thus, as we show in this article, although wild-type C57BL/6 mice mount cell-mediated and humoral adaptive immune responses to ZIKV, these responses were not required to prevent disease. However, when the type I IFN response of mice was suppressed, then the adaptive immune responses became critical. For example, when type I IFN signaling was blocked by Abs in Rag1-/- mice, the mice showed dramatic weight loss and ZIKV infection in the brain and testes. This phenotype was not observed in Ig-treated Rag1-/- mice or wild-type mice treated with anti-type I IFNR alone. Furthermore, we found that the CD8+ T cell responses of pregnant mice to ZIKV infection were diminished compared with nonpregnant mice. It is possible that diminished cell-mediated immunity during pregnancy could increase virus spread to the fetus. These results demonstrate an important role for the adaptive immune response in the control of ZIKV infection and imply that vaccination may prevent ZIKV-related disease, particularly when the type I IFN response is suppressed as it is in humans.
Pathogens.
2018 Aug 20
Woollard SM, Olwenyi OA, Dutta D, Dave RS, Mathews S, Gorantla S, Johnson N, Giavedoni L, Norgren RB Jr, Byrareddy SN.
PMID: 30127237 | DOI: 10.3390/pathogens7030070
Zika Virus (ZIKV) is primarily transmitted through mosquito bites. It can also be transmitted during sexual intercourse and in utero from mother to fetus. To gain preliminary insight into ZIKV pathology and immune responses on route of transmission, rhesus macaques (RMs) were inoculated with ZIKV (PRVABC59) via intravaginal (IVAG) (n = 3) or subcutaneous (sub Q) (n = 2) routes. Systemic ZIKV infection was observed in all RMs, regardless of the route of inoculation. After 9 days postinfection (dpi), ZIKV was not detected in the plasma of IVAG- and sub-Q-inoculated RMs. Importantly, RMs harbored ZIKV up to 60 dpi in various anatomical locations. Of note, ZIKV was also present in several regions of the brain, including the caudate nucleus, parietal lobe, cortex, and amygdala. These observations appear to indicate that ZIKV infection may be systemic and persistent regardless of route of inoculation. In addition, we observed changes in key immune cell populations in response to ZIKV infection. Importantly, IVAG ZIKV infection of RMs is associated with increased depletion of CD11C hi myeloid cells, reduced PD-1 expression in NK cells, and elevated frequencies of Ki67⁺ CD8⁺ central memory cells as compared to sub Q ZIKV-infected RMs. These results need to interpreted with caution due to the small number of animals utilized in this study. Future studies involving large groups of animals that have been inoculated through both routes of transmission are needed to confirm our findings.
Proceedings of the National Academy of Sciences of the United States of America
2021 Jun 22
Vennekens, A;Laporte, E;Hermans, F;Cox, B;Modave, E;Janiszewski, A;Nys, C;Kobayashi, H;Malengier-Devlies, B;Chappell, J;Matthys, P;Garcia, MI;Pasque, V;Lambrechts, D;Vankelecom, H;
PMID: 34161279 | DOI: 10.1073/pnas.2100052118
Diagn Pathol.
2015 Aug 19
Shi X, Wu S, Huo Z, Ling Q, Luo Y, Liang Z.
PMID: 26285694 | DOI: 10.1186/s13000-015-0376-z.
Arch Pathol Lab Med.
2016 Sep 28
Rosenberg AZ, Yu W, Hill DA, Reyes CA, Schwartz DA.
PMID: 27681334 | DOI: 10.5858/arpa.2016-0401-OA
Context .- The placenta is an important component in understanding the fetal response to intrauterine Zika virus infection, but the pathologic changes in this organ remain largely unknown. Hofbauer cells are fetal-derived macrophages normally present in the chorionic villous stroma. They have been implicated in a variety of physiological and pathologic processes, in particular involving infectious agents. Objectives .- To characterize the fetal and maternal responses and viral localization in the placenta following Zika virus transmission to an 11 weeks' gestation fetus. The clinical course was notable for prolonged viremia in the mother and extensive neuronal necrosis in the fetus. The fetus was delivered at 21 weeks' gestation after pregnancy termination. Design .- The placenta was evaluated by using immunohistochemistry for inflammatory cells (macrophages/monocytes [Hofbauer cells], B and T lymphocytes) and proliferating cells, and an RNA probe to Zika virus. The fetal brain and the placenta were previously found to be positive by reverse transcription-polymerase chain reaction for Zika virus RNA. Results .- The placenta demonstrated prominently enlarged, hydropic chorionic villi with hyperplasia and focal proliferation of Hofbauer cells. The degree of Hofbauer cell hyperplasia gave an exaggerated immature appearance to the villi. No acute or chronic villitis, villous necrosis, remote necroinflammatory abnormalities, chorioamnionitis, funisitis, or hemorrhages were present. An RNA probe to Zika virus was positive in villous stromal cells, presumably Hofbauer cells. Conclusions .- Zika virus placental infection induces proliferation and prominent hyperplasia of Hofbauer cells in the chorionic villi but does not elicit villous necrosis or a maternal or fetal lymphoplasmacellular or acute inflammatory cell reaction.
Acta Neuropathol.
2017 Mar 22
Chimelli L, Melo AS, Avvad-Portari E, Wiley CA, Camacho AH, Lopes VS, Machado HN, Andrade CV, Dock DC, Moreira ME, Tovar-Moll F, Oliveira-Szejnfeld PS, Carvalho AC, Ugarte ON, Batista AG, Amorim MM, Melo FO, Ferreira TA, Marinho JR, Azevedo GS, Leal JI, d
PMID: 28332092 | DOI: 10.1007/s00401-017-1699-5
A major concern associated with ZIKV infection is the increased incidence of microcephaly with frequent calcifications in infants born from infected mothers. To date, postmortem analysis of the central nervous system (CNS) in congenital infection is limited to individual reports or small series. We report a comprehensive neuropathological study in ten newborn babies infected with ZIKV during pregnancy, including the spinal cords and dorsal root ganglia (DRG), and also muscle, pituitaries, eye, systemic organs, and placentas. Using in situ hybridization (ISH) and electron microscopy, we investigated the role of direct viral infection in the pathogenesis of the lesions. Nine women had Zika symptoms between the 4th and 18th and one in the 28th gestational week. Two babies were born at 32, one at 34 and 36 weeks each and six at term. The cephalic perimeter was reduced in four, and normal or enlarged in six patients, although the brain weights were lower than expected. All had arthrogryposis, except the patient infected at 28 weeks gestation. We defined three patterns of CNS lesions, with different patterns of destructive, calcification, hypoplasia, and migration disturbances. Ventriculomegaly was severe in the first pattern due to midbrain damage with aqueduct stenosis/distortion. The second pattern had small brains and mild/moderate (ex-vacuo) ventriculomegaly. The third pattern, a well-formed brain with mild calcification, coincided with late infection. The absence of descending fibres resulted in hypoplastic basis pontis, pyramids, and cortico-spinal tracts. Spinal motor cell loss explained the intrauterine akinesia, arthrogryposis, and neurogenic muscle atrophy. DRG, dorsal nerve roots, and columns were normal. Lympho-histiocytic inflammation was mild. ISH showed meningeal, germinal matrix, and neocortical infection, consistent with neural progenitors death leading to proliferation and migration disorders. A secondary ischemic process may explain the destructive lesions. In conclusion, we characterized the destructive and malformative consequences of ZIKV in the nervous system, as reflected in the topography and severity of lesions, anatomic localization of the virus, and timing of infection during gestation. Our findings indicate a developmental vulnerability of the immature CNS, and shed light on possible mechanisms of brain injury of this newly recognized public health threat.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com