Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (49)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • (-) Remove Sox9 filter Sox9 (29)
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (8) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Red assay (6) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (4) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (23) Apply Cancer filter
  • HPV (14) Apply HPV filter
  • Infectious Disease (11) Apply Infectious Disease filter
  • Development (10) Apply Development filter
  • Other (5) Apply Other filter
  • Stem Cells (5) Apply Stem Cells filter
  • Bone (2) Apply Bone filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Neuroscience (2) Apply Neuroscience filter
  • Endocrinology (1) Apply Endocrinology filter
  • Inflammation (1) Apply Inflammation filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Skin (1) Apply Other: Skin filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Rainbow Trout Diet (1) Apply Rainbow Trout Diet filter
  • Regeneration (1) Apply Regeneration filter
  • Stem cell (1) Apply Stem cell filter

Category

  • Publications (49) Apply Publications filter
SHP2 Regulates the Osteogenic Fate of Growth Plate Hypertrophic Chondrocytes.

Sci Rep.

2017 Oct 05

Wang L, Huang J, Moore DC, Zuo C, Wu Q, Xie L, von der Mark K, Yuan X, Chen D, Warman ML, Ehrlich MG, Yang W.
PMID: 28983104 | DOI: 10.1038/s41598-017-12767-9

Transdifferentiation of hypertrophic chondrocytes into bone-forming osteoblasts has been reported, yet the underlying molecular mechanism remains incompletely understood. SHP2 is an ubiquitously expressed cytoplasmic protein tyrosine phosphatase. SHP2 loss-of-function mutations in chondroid cells are linked to metachondromatosis in humans and mice, suggesting a crucial role for SHP2 in the skeleton. However, the specific role of SHP2 in skeletal cells has not been elucidated. To approach this question, we ablated SHP2 in collagen 2α1(Col2α1)-Cre- and collagen 10α1(Col10α1)-Cre-expressing cells, predominantly proliferating and hypertrophic chondrocytes, using "Cre-loxP"-mediated gene excision. Mice lacking SHP2 in Col2α1-Cre-expressing cells die at mid-gestation. Postnatal SHP2 ablation in the same cell population caused dwarfism, chondrodysplasia and exostoses. In contrast, mice in which SHP2 was ablated in the Col10α1-Cre-expressing cells appeared normal but were osteopenic. Further mechanistic studies revealed that SHP2 exerted its influence partly by regulating the abundance of SOX9 in chondrocytes. Elevated and sustained SOX9 in SHP2-deficient hypertrophic chondrocytes impaired their differentiation to osteoblasts and impaired endochondral ossification. Our study uncovered an important role of SHP2 in bone development and cartilage homeostasis by influencing the osteogenic differentiation of hypertrophic chondrocytes and provided insight into the pathogenesis and potential treatment of skeletal diseases, such as osteopenia and osteoporosis.

Lizard Blastema Organoid Model Recapitulates Regenerated Tail Chondrogenesis

Journal of developmental biology

2022 Feb 10

Vonk, AC;Hasel-Kolossa, SC;Lopez, GA;Hudnall, ML;Gamble, DJ;Lozito, TP;
PMID: 35225965 | DOI: 10.3390/jdb10010012

(1) Background: Lizard tail regeneration provides a unique model of blastema-based tissue regeneration for large-scale appendage replacement in amniotes. Green anole lizard (Anolis carolinensis) blastemas contain fibroblastic connective tissue cells (FCTCs), which respond to hedgehog signaling to create cartilage in vivo. However, an in vitro model of the blastema has not previously been achieved in culture. (2) Methods: By testing two adapted tissue dissociation protocols and two optimized media formulations, lizard tail FCTCs were pelleted in vitro and grown in a micromass blastema organoid culture. Pellets were analyzed by histology and in situ hybridization for FCTC and cartilage markers alongside staged original and regenerating lizard tails. (3) Results: Using an optimized serum-free media and a trypsin- and collagenase II-based dissociation protocol, micromass blastema organoids were formed. Organoid cultures expressed FCTC marker CDH11 and produced cartilage in response to hedgehog signaling in vitro, mimicking in vivo blastema and tail regeneration. (4) Conclusions: Lizard tail blastema regeneration can be modeled in vitro using micromass organoid culture, recapitulating in vivo FCTC marker expression patterns and chondrogenic potential.
Cellular localization of guanylin and uroguanylin mRNAs in human and rat duodenal and colonic mucosa.

Cell Tissue Res.

2016 Apr 05

Brenna Ø, Furnes MW, Munkvold B, Kidd M, Sandvik AK, Gustafsson BI.
PMID: 27044258 | DOI: -

Guanylin (GUCA2A/Guca2a/GN) and uroguanylin (GUCA2B/Guca2b/UGN) are expressed in the gastrointestinal tract and have been implicated in ion and fluid homeostasis, satiety, abdominal pain, growth and intestinal barrier integrity. Their cellular sources are debated and include goblet cells, entero-/colonocytes, enteroendocrine (EE) cells and tuft cells. We therefore investigated the cellular sources of GN and UGN mRNAs in human and rat duodenal and colonic epithelium with in situ hybridization (ISH) to determine co-expression with Chromogranin A (CHGA/Chga/CgA; enterochromaffin [EC] cells), defensin alpha 6 (DEFA6/Defa6; Paneth cells), mucin 2 (MUC2/Muc2; goblet cells) and selected tuft cell markers. GUCA2A/Guca2a expression was localized to goblet cells and colonocytes in human and rat colon. In human duodenum, GUCA2A was expressed in Paneth cells and was scarce in villous epithelial cells. In rat duodenum, Guca2a was only localized to goblet cells. Guca2b was focally expressed in rat colon. In human and rat duodenum and in human colon, GUCA2B/Guca2b was expressed in dispersed solitary epithelial cells, some with a tuft cell-like appearance. Neither GUCA2A nor GUCA2B were co-expressed with CHGA in human duodenal cells. Consequently, EC cells are probably not the major source of human GN or UGN but other EE cells as a source of GN or UGN are not entirely excluded. No convincing overlap with tuft cell markers was found. For the first time, we demonstrate the cellular expression of GUCA2B in human duodenum. The specific cellular distribution of both GN and UGN differs between duodenum and colon and between human and rat intestines.

Next-generation Sequencing Reveals Recurrent Somatic Mutations in Small Cell Neuroendocrine Carcinoma of the Uterine Cervix.

Am J Surg Pathol.

2018 Jun 01

Xing D, Zheng G, Schoolmeester JK, Li Z, Pallavajjala A, Haley L, Conner MG, Vang R, Hung CF, Wu TC, Ronnett BM.
PMID: 29505425 | DOI: 10.1097/PAS.0000000000001042

Small cell neuroendocrine carcinoma (SCNEC) of the uterine cervix is a rare but extremely aggressive tumor. While high-risk human papillomavirus (HPV) is involved at an early stage of oncogenesis in many tumors, additional driving events have been postulated to facilitate the progression of SCNECs. Identification of oncogenic drivers could guide targeted therapy of this neoplasm. Clinicopathologic features of 10 cervical SCNECs are reported. Analyses included immunohistochemical evaluation of p16, p53, synaptophysin, and chromogranin expression; in situ hybridizations and polymerase chain reaction for high-risk HPV and/or HPV 18; and next-generation sequencing based on a 637-gene panel. The patients ranged in age from 28 to 68 years (mean, 45.6 y; median, 40.5 y). All tumors had diffuse p16 and synaptophysin expression. All but 1 tumor was positive for chromogranin (extent of staining ranged from focal to diffuse). HPV 18 was detected in 6 tumors and HPV 35 in 1 tumor. At least 1 driver mutation was detected in 8 tumors. Four cases harbored TP53 somatic mutations, 3 of which correlated with an aberrant p53 staining pattern. Four PIK3CA mutations (p.G106A, p.N345T, p.E545K, and p.E545D) were detected in 3 tumors, 2 of which also harbored TP53 mutations. Oncogenic driver mutations involving KRAS, Erbb2, c-Myc, NOTCH1, BCL6, or NCOA3 were detected in 4 tumors. Mutations in caretaker tumor suppressors PTEN, RB1, BRCA1, BRCA2, and ARID1B were also identified in 4 tumors that commonly coharbored activating oncogenic mutations. Targeted next-generation gene sequencing identified genetic alterations involving the MAPK, PI3K/AKT/mTOR, and TP53/BRCA pathways in SCNECs. The presence of genetic alterations that are amenable to targeted therapy in SCNECs offers the potential for individualized management strategies for treatment of this aggressive tumor.

Nuclear receptor Nr5a2 promotes diverse connective tissue fates in the jaw

Developmental cell

2023 Mar 27

Chen, HJ;Barske, L;Talbot, JC;Dinwoodie, OM;Roberts, RR;Farmer, DT;Jimenez, C;Merrill, AE;Tucker, AS;Crump, JG;
PMID: 36905926 | DOI: 10.1016/j.devcel.2023.02.011

Organ development involves the sustained production of diverse cell types with spatiotemporal precision. In the vertebrate jaw, neural-crest-derived progenitors produce not only skeletal tissues but also later-forming tendons and salivary glands. Here we identify the pluripotency factor Nr5a2 as essential for cell-fate decisions in the jaw. In zebrafish and mice, we observe transient expression of Nr5a2 in a subset of mandibular postmigratory neural-crest-derived cells. In zebrafish nr5a2 mutants, nr5a2-expressing cells that would normally form tendons generate excess jaw cartilage. In mice, neural-crest-specific Nr5a2 loss results in analogous skeletal and tendon defects in the jaw and middle ear, as well as salivary gland loss. Single-cell profiling shows that Nr5a2, distinct from its roles in pluripotency, promotes jaw-specific chromatin accessibility and gene expression that is essential for tendon and gland fates. Thus, repurposing of Nr5a2 promotes connective tissue fates to generate the full repertoire of derivatives required for jaw and middle ear function.
Discrepancy of p16 immunohistochemical expression and HPV RNA in penile cancer. A multiplex in situ hybridization/immunohistochemistry approach study

Infectious agents and cancer

2021 Mar 31

Zito Marino, F;Sabetta, R;Pagliuca, F;Brunelli, M;Aquino, G;Perdonà, S;Botti, G;Facchini, G;Fiorentino, F;Di Lauro, G;De Sio, M;De Vita, F;Toni, G;Borges Dos Reis, R;Neder, L;Franco, R;
PMID: 33789689 | DOI: 10.1186/s13027-021-00361-8

The high-risk human papillomavirus (HPV) infection represents one of the main etiologic pathways of penile carcinogenesis in approximately 30-50 % of cases. Several techniques for the detection of HPV are currently available including Polymerase chain reaction-based techniques, DNA and RNA in situ hybridization (ISH), p16 immunohistochemistry (IHC). The multiplex HPV RNA ISH/p16 IHC is a novel technique for the simultaneous detection of HPV E6/E7 transcripts and p16INK4a overexpression on the same slide in a single assay. The main aim of this study was to evaluate the discrepancy of p16 IHC expression relatively to HPV RNA ISH in penile cancer tissue. We collected a series of 60 PCs. HPV has been analysed through the RNA ISH, p16 IHC and the multiplex HPV RNA ISH/p16 IHC. The multiplex HPV RNA ISH /p16 IHC results in the series were in complete agreement with the previous results obtained through the classic p16 IHC and HPV RNA scope carried out on two different slides. The multiplex HPV RNA ISH /p16 IHC showed that HPV positivity in our series is more frequently in usual squamous cell carcinoma than in special histotypes (19 out of 60 - 15 %- versus 6 out of 60 - 10 %-), in high-grade than in moderate/low grade carcinomas (6 out of 60 - 10 %- versus 4 out of 60 - 6.7 %-). In addition, our data revealed that in 5 out of 20 cases with p16 high intensity expression is not associated with HPV RNA ISH positivity. Our findings emphasize that the use of p16 as a surrogate of HPV positivity was unsuccessful in approximatively 8 % of cases analysed in our series. Indeed, p16 IHC showed a sensitivity of 100 % and a specificity of 71 %, with a positive predictive value (PPV) of 54 % and a negative predictive value of 100 %; when considering high intensity, p16 IHC showed a sensitivity of 100 %, a specificity of 89 %, with a PPV of 75 % and NPV of 100 %. Since HPV positivity could represent a relevant prognostic and predictive value, the correct characterization offered by this approach appears to be of paramount importance.
A subpopulation of synovial fibroblasts in a mouse model of chronic inflammatory rheumatoid arthritis toward osteochondrogenic lineage.

JBMR Plus (2018)

2018 Dec 07

Miura Y, Ota S, Peterlin M, McDevitt G, Kanazawa S.
| DOI: 10.1002/jbm4.10132

Specific MHC class II genes result in a high susceptibility to rheumatoid arthritis (RA), with co‐stimulatory molecules working together with MHC class II during the progression of the disease. To elucidate the involvement of the B7.1 co‐stimulatory molecule in RA, we analyzed the phenotype of B7.1 transgenic (named D1BC) mice and the sequential differentiation of synovial fibroblasts (SFs) by studying the expression of chondrogenic and osteogenic lineage markers together with lineage tracing experiment using B7.1 transgene in vivo. The B7.1 transgene was driven by a collagen type II (CII) promoter and enhancer in the D1BC mouse. A low‐dose of bovine CII (bCII) was used to induce chronic articular inflammation with interstitial pneumonitis. Joint damage was analyzed by histopathological examination and computed tomography. B7.1 was expressed in articular cartilage and SFs of D1BC mice. Chronic inflammatory arthritis in bCII‐D1BC mouse shared common features with those found in patients with RA, such as pannus formation, bone destruction, osteoporosis, and joint ankylosis. A subpopulation of SFs (Runx2+, Sox9+, Col10a1+, Osx+ and CX‐) in the pannus was classified as osteochondrogenic lineage rather than mesenchymal stromal lineage. These cells underwent differentiation into osteogenic lineage via hypertrophic chondrocytes at the end of the chronic phase. The ectopic expression of B7.1 in chondrocytes and SFs leads to an increased susceptibility to chronic inflammatory arthritis and subsequent new bone formation, reminiscent of ankylosis. The regulation of cartilage remodeling in pannus tissue is an important consideration in the treatment of RA.
Therapeutic efficacy of a VSV-GP-based human papilloma virus vaccine in a murine cancer model

Journal of molecular biology

2023 Apr 20

Riepler, L;Frommelt, LS;Wilmschen-Tober, S;Mbuya, W;Held, K;Volland, A;von Laer, D;Geldmacher, C;Kimpel, J;
PMID: 37086948 | DOI: 10.1016/j.jmb.2023.168096

Human papilloma virus (HPV) infections are associated with almost all cervical cancers and to a lower extend also with anogenital or oropharyngeal cancers. HPV proteins expressed in HPV-associated tumors are attractive antigens for cancer vaccination strategies as self-tolerance, which is associated with most endogenous tumor-associated antigens, does not need to be overcome. In this study, we generated a live attenuated cancer vaccine based on the chimeric vesicular stomatitis virus VSV-GP, which has previously proven to be a potent vaccine vector and oncolytic virus. Genes at an earlier position in the genome more to the 3' end are expressed stronger compared to genes located further downstream. By inserting an HPV16-derived antigen cassette consisting of E2, E6 and E7 into VSV-GP either at first (HPVp1) or fifth (HPVp5) position in VSV-GP's genome we aimed to analyze the effect of vaccine antigen position and consequently expression level on viral fitness, immunogenicity, and anti-tumoral efficacy in a syngeneic mouse tumor model. HPVp1 expressed higher amounts of HPV antigens compared to HPVp5 in vitro but had a slightly delayed replication kinetic which overall translated into increased HPV-specific T cell responses upon vaccination of mice. Immunization with both vectors protected mice in prophylactic and in therapeutic TC-1 tumor models with HPVp1 being more effective in the prophylactic setting. Taken together, VSV-GP is a promising candidate as therapeutic HPV vaccine and first position of the vaccine antigen in a VSV-derived vector seems to be superior to fifth position.
Detection of HPV infection in urothelial carcinoma using RNAscope: Clinicopathological characterization

Cancer medicine

2021 Jun 23

Musangile, FY;Matsuzaki, I;Okodo, M;Shirasaki, A;Mikasa, Y;Iwamoto, R;Takahashi, Y;Kojima, F;Murata, SI;
PMID: 34164940 | DOI: 10.1002/cam4.4091

Human papillomavirus (HPV) is a well-established mucosotropic carcinogen, but its impact on urothelial neoplasm is unclear. We aimed to clarify the clinical and pathological features of HPV-related urothelial carcinoma (UC).Tissue samples of 228 cases of UC were obtained from the bladder, upper and lower urinary tract, and metastatic sites to construct a tissue microarray. The samples were analyzed for the presence of HPV by a highly sensitive and specific mRNA in situ hybridization (RISH) technique (RNAscope) with a probe that can detect 18 varieties of high-risk HPV. We also conducted immunohistochemistry (IHC) for a major HPV capsid antibody and DNA-PCR.The HPV detection rates varied among the methods; probably due to low HPV copy numbers in UC tissues and the insufficient specificity and sensitivity of the IHC and PCR assays. The RISH method had the highest accuracy and identified HPV infection in 12 (5.2%) of the cases. The histopathological analysis of the HPV-positive UC showed six cases of usual type UC, five cases of UC with squamous differentiation (UC_SqD), and one case of micropapillary UC. The HPV detection rate was six-fold higher in the cases of UC_SqD than in the other variants of UC (odds ratio [OR] =8.9, p = 0.002). In addition, HPV infection showed a significant association with tumor grade (OR =9.8, p = 0.03) and stage (OR =4.7, p = 0.03) of UC. Moreover, the metastatic rate was higher in HPV-positive than in negative UC (OR =3.4).These data indicate that although the incidence of HPV infection in UC is low, it is significantly associated with squamous differentiation and poor prognosis. Furthermore, our observations show that RNAscope is an ideal method for HPV detection in UC compared with the other standard approaches such as IHC and PCR assays.
SOX10 Immunoexpression in Basaloid Squamous Cell Carcinomas: A Diagnostic Pitfall for Ruling out Salivary Differentiation.

Head Neck Pathol. 2018 Nov 29.

2018 Nov 29

Rooper LM, McCuiston AM, Westra WH, Bishop JA.
PMID: 30498968 | DOI: 10.1007/s12105-018-0990-7

SOX10 immunoexpression is increasingly recognized in salivary gland tumors, including but not limited to those with myoepithelial, serous acinar, and intercalated duct differentiation. However, SOX10 expression has not been extensively evaluated in other epithelial tumors that can mimic salivary origin. Basaloid squamous cell carcinoma (SCC) is a unique variant of SCC that shows morphologic overlap with several salivary tumors, including adenoid cystic carcinoma, basal cell adenocarcinoma, and myoepithelial carcinoma. We performed SOX10 immunohistochemistry on 22 basaloid SCCs and 280 non-basaloid SCCs. If tissue was available, we also performed immunohistochemistry for S100 and p16, and in-situ hybridization for high-risk HPV RNA. SOX10 was positive in 13/22 basaloid SCCs (59%), including 5/6 (83%) that were HPV-positive and 6/12 (50%) that were HPV-negative. Only 2/12 basaloid SCC (17%) demonstrated focal S100 expression. All non-basaloid SCCs were SOX10 negative. Frequent positivity for SOX10 in basaloid SCC presents a significant diagnostic pitfall for distinguishing these tumors from various basaloid salivary carcinomas. The preponderance of SOX10 expression in the basaloid variant of HPV-positive SCC also presents a diagnostic challenge in separating it from HPV-related multiphenotypic sinonasal carcinoma. SOX10 may be more broadly considered a marker of basal differentiation and should not be assumed to be specific for salivary origin in epithelial head and neck tumors.
GATA4/6 regulate DHH transcription in rat adrenocortical autografts

Sci Rep

2020 Jan 16

Yoshida T, Takizawa N, Matsuda T, Yamada H, Kitada M, Tanaka S
PMID: 31949236 | DOI: 10.1038/s41598-019-57351-5

Adrenal cortex autotransplantation with ACTH stimulation may be an alternative therapy for patients with bilateral adrenalectomy to avoid adrenal crisis, but its underlying mechanism has not been elucidated. Previously, we detected Dhh upregulation in rat adrenocortical autografts after transplantation. Here, we investigated potential regulators such as Gata4, Gata6, Sry and Sox9 which affect Dhh transcription in adrenocortical autografts with or without ACTH stimulation. In ACTH-stimulated autografts, Gata4 and Gata6 were downregulated compared to control autografts. This response was linked to rDhh repression. A reporter assay using the upstream region of rDhh and a GATA binding motif revealed that rDhh promoters were significantly upregulated by co-transfection with Gata4 or Gata6 or both. Sry and Sox9 expression in autografts with or without ACTH stimulation were verified by PCR and RNAscope analyses. The ovarian differentiation factors Foxl2 and Rspo1 were also upregulated in the autografts. Gata4 and Gata6 were found to be significant factors in the regulation of rDhh expression and could be associated with adrenocortical autograft maintenance. Gonadal primordia with bipotential testicular and ovarian functions may also be present in these autografts.
Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type

Nat Neurosci.

2018 Aug 27

"Boldog E, Bakken TE, Hodge RD, Novotny M, Aevermann BD, Baka J, Bordé S, Close JL, Diez-Fuertes F, Ding SL, Faragó N, Kocsis AK, Kovács B, Maltzer Z, McCorrison JM, Miller JA, Molnár G, Oláh G, Ozsvár A, Rózsa M, Shehata SI, Smith KA, Sunkin SM, Tran D
PMID: 30150662 | DOI: 10.1038/s41593-018-0205-2

We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1-SST-CALB2-PVALB-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?