RNAscope™ HiPlex CS Probe - Mm-Nek8-T8 | ![]() |
BaseScope™ Probe - BA-V-HIV-LTR-3zz-st-sense-C2 | ![]() |
Compare Selected | Clear |
ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Journal of molecular biology
2023 Apr 20
Riepler, L;Frommelt, LS;Wilmschen-Tober, S;Mbuya, W;Held, K;Volland, A;von Laer, D;Geldmacher, C;Kimpel, J;
PMID: 37086948 | DOI: 10.1016/j.jmb.2023.168096
Cancer medicine
2021 Jun 23
Musangile, FY;Matsuzaki, I;Okodo, M;Shirasaki, A;Mikasa, Y;Iwamoto, R;Takahashi, Y;Kojima, F;Murata, SI;
PMID: 34164940 | DOI: 10.1002/cam4.4091
Head Neck Pathol. 2018 Nov 29.
2018 Nov 29
Rooper LM, McCuiston AM, Westra WH, Bishop JA.
PMID: 30498968 | DOI: 10.1007/s12105-018-0990-7
International journal of molecular sciences
2022 Mar 17
Torz, L;Niss, K;Lundh, S;Rekling, JC;Quintana, CD;Frazier, SED;Mercer, AJ;Cornea, A;Bertelsen, CV;Gerstenberg, MK;Hansen, AMK;Guldbrandt, M;Lykkesfeldt, J;John, LM;Villaescusa, JC;Petersen, N;
PMID: 35328681 | DOI: 10.3390/ijms23063260
Am J Surg Pathol.
2018 Jan 01
Bishop JA, Cowan ML, Shum CH, Westra WH.
PMID: 28877061 | DOI: 10.1097/PAS.0000000000000932
Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. Recent studies have shown that most MECs harbor gene fusions involving MAML2-an alteration that appears to be specific for MEC, a finding that could be diagnostically useful. While most cases of MEC are histologically straightforward, uncommon variants can cause considerable diagnostic difficulty. We present 2 variants of MEC for which MAML2 studies were crucial in establishing a diagnosis: a previously undescribed ciliated variant, and the recently described Warthin-like variant. All cases of ciliated and Warthin-like MEC were retrieved from the archives of The Johns Hopkins Hospital. Break-apart fluorescence in situ hybridization for MAML2 was performed on all cases. One ciliated MEC and 6 Warthin-like MECs were identified. The ciliated MEC presented as a 4.6 cm cystic lymph node metastasis originating from the tongue base in a 47-year-old woman. The Warthin-like MECs presented as parotid masses ranging in size from 1.2 to 3.3 (mean, 2.7 cm) in 4 women and 2 men. The ciliated MEC consisted of macrocystic spaces punctuated by tubulopapillary proliferations of squamoid cells and ciliated columnar cells. The Warthin-like MECs were comprised of cystic spaces lined by multilayered oncocytic to squamoid cells surrounded by a circumscribed cuff of lymphoid tissue with germinal centers. In these cases, the Warthin-like areas dominated the histologic picture. Conventional MEC, when present, represented a minor tumor component. MAML2 rearrangements were identified in all cases. Warthin-like MEC, and now a ciliated form of MEC, are newly described variants of a common salivary gland carcinoma. Unfamiliarity with these novel forms, unanticipated cellular features (eg, cilia), and morphologic overlap with mundane benign processes (eg, developmental ciliated cysts, Warthin tumor) or other carcinomas (eg, ciliated human papillomavirus-related carcinoma) may render these variants susceptible to misdiagnosis. These unusual variants appear to consistently harbor MAML2 fusions-a finding that establishes a clear link to conventional MEC and provides a valuable adjunct in establishing the diagnosis.
Dis Esophagus.
2018 Jun 21
Wong MYW, Wang B, Yang A, Khor A, Xuan W, Rajendra S.
PMID: 29931323 | DOI: 10.1093/dote/doy051
Given the comparable strains of high-risk human papillomavirus (HPV) present in a subset of Barrett's dysplasia and esophageal adenocarcinoma as in head and neck squamous cell carcinomas and the anatomical proximity of both lesions, we hypothesized that oral sex may increase the risk of Barrett's dysplasia/esophageal adenocarcinoma. Therefore, we compared the sexual behavior of patients with Barrett's dysplasia/esophageal adenocarcinoma and controls (hospital, reflux, and Barrett's metaplasia) to explore a plausible mechanism of viral transmission to the lower esophagus. A hospital-based case-control study involving 36 Barrett's dysplasia/esophageal adenocarcinoma subjects and 55 controls with known HPV DNA status and markers of transcriptional activity i.e p16INK4A and E6/E7 mRNA of the esophageal epithelium was conducted to evaluate differences in sexual history (if any). Barrett's dysplasia/esophageal adenocarcinoma patients were more likely than controls to be positive for HPV DNA (18 of 36, 50% vs. 6/55, 11%, p for trend <0.0001), be male (P = 0.001) and in a relationship (P = 0.02). Viral genotypes identified were HPV 16 (n = 14), 18 (n = 2), 11 (n = 1) and 6 (n = 1). HPV exposure conferred a significantly higher risk for Barrett's dysplasia/esophageal adenocarcinoma as compared with hospital/reflux/Barrett's metaplasia controls (OR = 6.8, 95% CI: 2.1-23.1, adjusted P = 0.002). On univariate analysis, ≥6 lifetime oral sex partners were significantly associated with dysplastic Barrett's esophagus and adenocarcinoma (OR, 4.0; 95% CI: 1.2-13.7, P = 0.046). After adjustment for confounders, HPV exposure and men with ≥2 lifetime sexual partners were at significant risk for Barrett's dysplasia/esophageal adenocarcinoma. If these initial findings can be confirmed in larger studies, it could lead to effective prevention strategies in combating some of the exponential increase in the incidence of esophageal adenocarcinoma in the West.
Appl Immunohistochem Mol Morphol.
2017 Aug 02
Drumheller B, Cohen C, Lawson D, Siddiqui MT.
PMID: 28777152 | DOI: 10.1097/PAI.0000000000000550
Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein. A direct clinical comparison between p16 IHC and an automated RNA ISH using 18 probes has not been established. Samples from 27 formalin-fixed, paraffin-embedded HNSCC cases from the Emory University Hospital archives were stained using 18 individual RNA ISH probes for high-risk HPV (RNAscope 2.5 LS Probe ) on a Leica autostainer (Buffalo Grove, IL) and were compared with p16 IHC. Two pathologists reviewed and reached a consensus on all interpretations. The RNAscope technique was positive in 89% (24/27) and the p16 IHC was positive in 78% (21/27). The RNAscope was negative in 11.1% of samples (3/27) and the p16 IHC-negative in 22.2% (6/27). The RNA ISH detected 100% of the p16-positive IHC-stained slides and had a concordance of 88.9% (24/27). This easy to interpret automated staining method for 18 high-risk HPV genotypes is a feasible replacement for the indirect p16 IHC method.
Br J Cancer
2019 Mar 20
Craig SG, Anderson LA, Schache AG, Moran M, Graham L, Currie K, Rooney K, Robinson M, Upile NS, Brooker R, Mesri M, Bingham V, McQuaid S, Jones T, McCance DJ, Salto-Tellez M, McDade SS and James JA
PMID: 30890775 | DOI: 10.1038/s41416-019-0414-9
Head Neck Pathol.
2018 Feb 14
Shah AA, Lamarre ED, Bishop JA.
PMID: 29445997 | DOI: 10.1007/s12105-018-0895-5
Human papillomavirus (HPV)-related multiphenotypic sinonasal carcinoma is a peculiar sinonasal tract tumor that demonstrates features of both a surface-derived and salivary gland carcinoma. Implicit in its name, this tumor has a consistent association with high-risk HPV, particularly type 33. It was first described in 2013 under the designation of HPV-related carcinoma with adenoid cystic carcinoma-like features. However, since its initial description additional cases have emerged which demonstrate a wide morphologic spectrum and relatively indolent clinical behavior. Herein we report our experience with a case of HPV-related multiphenotypic sinonasal carcinoma that was initially classified as adenoid cystic carcinoma in the 1980s. The patient recurred after a 30-year disease free interval. RNA in situ hybridization confirmed the presence of high-risk HPV in both her recurrence and her initial tumor in the 1980s, which allowed for reclassification as HPV-related multiphenotypic sinonasal carcinoma. Our case adds to the literature of this relatively newly described entity and supports the indolent clinical behavior of this neoplasm but also demonstrates a potential for very late local recurrence.
Frontiers in medicine
2022 May 03
Montella, M;Sabetta, R;Ronchi, A;De Sio, M;Arcaniolo, D;De Vita, F;Tirino, G;Caputo, A;D'Antonio, A;Fiorentino, F;Facchini, G;Lauro, GD;Perdonà, S;Ventriglia, J;Aquino, G;Feroce, F;Borges Dos Reis, R;Neder, L;Brunelli, M;Franco, R;Zito Marino, F;
PMID: 35592855 | DOI: 10.3389/fmed.2022.874213
Elife.
2017 Jun 20
Paeger L, Karakasilioti I, Altmüller J, Frommolt P, Brüning J, Kloppenburg P.
PMID: 28632132 | DOI: 10.7554/eLife.25770
In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons. Cell type-specific transcriptomics and pharmacological experiments revealed that the opposing effect on these neurons is mediated by the activation of excitatory α1A - and β- adrenergic receptors in NPY/AgRP neurons, while POMC neurons are inhibited via α2A - adrenergic receptors. Thus, the coordinated differential modulation of the key hypothalamic neurons in control of energy homeostasis assigns noradrenalin an important role to promote feeding.
Cell reports
2022 May 24
Tokarska, A;Silberberg, G;
PMID: 35613598 | DOI: 10.1016/j.celrep.2022.110842
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com