CB1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome
Clinical and translational medicine
Cinar, R;Park, JK;Zawatsky, CN;Coffey, NJ;Bodine, SP;Abdalla, J;Yokoyama, T;Jourdan, T;Jay, L;Zuo, MXG;O'Brien, KJ;Huang, J;Mackie, K;Alimardanov, A;Iyer, MR;Gahl, WA;Kunos, G;Gochuico, BR;Malicdan, MCV;
PMID: 34323400 | DOI: 10.1002/ctm2.471
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Shah AA, Lamarre ED, Bishop JA.
PMID: 29445997 | DOI: 10.1007/s12105-018-0895-5
Human papillomavirus (HPV)-related multiphenotypic sinonasal carcinoma is a peculiar sinonasal tract tumor that demonstrates features of both a surface-derived and salivary gland carcinoma. Implicit in its name, this tumor has a consistent association with high-risk HPV, particularly type 33. It was first described in 2013 under the designation of HPV-related carcinoma with adenoid cystic carcinoma-like features. However, since its initial description additional cases have emerged which demonstrate a wide morphologic spectrum and relatively indolent clinical behavior. Herein we report our experience with a case of HPV-related multiphenotypic sinonasal carcinoma that was initially classified as adenoid cystic carcinoma in the 1980s. The patient recurred after a 30-year disease free interval. RNA in situ hybridization confirmed the presence of high-risk HPV in both her recurrence and her initial tumor in the 1980s, which allowed for reclassification as HPV-related multiphenotypic sinonasal carcinoma. Our case adds to the literature of this relatively newly described entity and supports the indolent clinical behavior of this neoplasm but also demonstrates a potential for very late local recurrence.
Montella, M;Sabetta, R;Ronchi, A;De Sio, M;Arcaniolo, D;De Vita, F;Tirino, G;Caputo, A;D'Antonio, A;Fiorentino, F;Facchini, G;Lauro, GD;Perdonà, S;Ventriglia, J;Aquino, G;Feroce, F;Borges Dos Reis, R;Neder, L;Brunelli, M;Franco, R;Zito Marino, F;
PMID: 35592855 | DOI: 10.3389/fmed.2022.874213
Penile cancer (PC) is an extremely rare malignancy, and the patients at advanced stages have currently limited treatment options with disappointing results. Immune checkpoint inhibitors anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) are currently changing the treatment of several tumors. Furthermore, the microsatellite instability (MSI) and the deficient mismatch repair system (dMMR) proteins represent predictive biomarkers for response to immune checkpoint therapy. Until present, few data have been reported related to PD-L1 expression and MSI in PC. The main aim of our study was the evaluation of PD-L1 expression in tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs) in immune cells and the analysis of dMMR/MSI status in a large series of PCs.A series of 72 PC, including 65 usual squamous cell carcinoma (USCC), 1 verrucous, 4 basaloid, 1 warty, and 1 mixed (warty-basaloid), was collected. Immunohistochemistry (IHC) was performed to assess PD-L1 expression using two different anti-PD-L1 antibodies (clone SP263 and SP142 Ventana) and MMR proteins expression using anti-MLH1, anti-PMS2, anti-MSH2, and anti-MSH6 antibodies. PCR analysis was performed for the detection of MSI status.Of the 72 PC cases analyzed by IHC, 45 (62.5%) cases were TC positive and 57 (79%) cases were combined positive score (CPS) using PDL1 SP263. In our cohort, TILs were present in 62 out of 72 cases (86.1%), 47 (75.8%) out of 62 cases showed positivity to PDL1 clone SP142. In our series, 59 cases (82%) had pMMR, 12 cases (16.7%) had lo-paMMR, and only 1 case (1.3%) had MMR. PCR results showed that only one case lo-paMMR was MSI-H, and the case dMMR by IHC not confirmed MSI status.Our findings showed that PD-L1 expression and MSI status represent frequent biological events in this tumor suggesting a rationale for a new frontier in the treatment of patients with PC based on the immune checkpoint inhibitors.
Tang, WC;Tsao, SW;Jones, GE;Liu, X;Tsai, MH;Delecluse, HJ;Dai, W;You, C;Zhang, J;Huang, SCM;Leung, MM;Liu, T;Ching, YP;Chen, H;Lo, KW;Li, X;Tsang, CM;
PMID: 36420735 | DOI: 10.1002/path.6036
Invadopodia are actin-rich membrane protrusions that digest the matrix barrier during cancer metastasis. Since the discovery of invadopodia, they were visualized as localized and dot-like structures in different types of cancer cells on top of a 2D matrix. In this investigation of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), a highly invasive cancer frequently accompanied by neck lymph node and distal organ metastases, we revealed a new form of invadopodium with mobilizing features. Integration of live-cell imaging and molecular assays revealed the interaction of macrophage-released TNFα and EBV-encoded latent membrane protein 1 (LMP1) in co-activating the EGFR/Src/ERK/cortactin and Cdc42/N-WASP signaling axes for mobilizing the invadopodia with lateral movements. This phenomenon endows the invadopodia with massive degradative power, visualized as a shift of focal dot-like digestion patterns on a 2D gelatin to a dendrite-like digestion pattern. Notably, single stimulation of either LMP1 or TNFα could only enhance the number of ordinary dot-like invadopodia, suggesting that the EBV infection sensitizes the NPC cells to form mobilizing invadopodia when encountering a TNFα-rich tumor microenvironment. This study unveils the interplay of EBV and stromal components in driving the invasive potential of NPC via unleashing the propulsion of invadopodia in overcoming matrix hurdles. This article is protected by
Pathology - Research and Practice
Schwab, C;Domke, L;Rose, F;Hausser, I;Schirmacher, P;Longerich, T;
| DOI: 10.1016/j.prp.2022.154000
Pulmonary capillary microthrombosis has been proposed as a major pathogenetic factor driving severe COVID-19. Autopsy studies reported endothelialitis but it is under debate if it is caused by SARS-CoV-2 infection of endothelial cells. In this study, RNA in situ hybridization was used to detect viral RNA and to identify the infected cell types in lung tissue of 40 patients with fatal COVID-19. SARS-CoV-2 Spike protein-coding RNA showed a steadily decreasing signal abundance over a period of three weeks. Besides the original virus strain the variants of concern Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) could also be detected by the assay. Viral RNA was mainly detected in alveolar macrophages and pulmonary epithelial cells, while only single virus-positive endothelial cells were observed even in cases with high viral load suggesting that viral infection of endothelial cells is not a key factor for the development of pulmonary capillary microthrombosis.
Gelwan E, Malm IJ, Khararjian A, Fakhry C, Bishop JA, Westra WH.
PMID: 28877058 | DOI: 10.1097/PAS.0000000000000929
The oral cavity and oropharynx have historically been viewed as a single anatomic compartment of the head and neck. The practice of combining the oral cavity and oropharynx has recently been revised, largely owing to the observation that human papillomavirus (HPV)-related carcinogenesis has a strong predilection for the oropharynx but not the oral cavity. The purpose of this study was to determine whether HPV is evenly distributed across squamous cell carcinomas of the oropharynx including those sites that do not harbor tonsillar tissues such as the soft palate. A search of the medical records of the Johns Hopkins Hospital identified 32 primary squamous cell carcinomas of the soft palate (n=31) and posterior pharyngeal wall (n=1). All were evaluated with p16 immunohistochemistry and high-risk HPV in situ hybridization (ISH) (29 by RNA ISH and 3 by DNA ISH). For comparison, we also reviewed the medical records to obtain the HPV status of patients who had undergone HPV testing of primary tonsillar carcinomas over the same time interval as part of their clinical care. High-risk HPV as detected by ISH was present in just 1 (3.1%) of the 32 oropharyngeal squamous cell carcinomas, including 1 of 2 p16-positive carcinomas. The difference in HPV detection rates between tonsillar and nontonsillar sites was significant (1/32, 3.1% vs. 917/997, 92%; P<0.0001). HPV is not frequently detected in squamous cell carcinomas arising from nontonsillar regions of the oropharynx. Indeed, squamous cell carcinomas of the soft palate more closely resemble those arising in the oral cavity than those arising in areas of the oropharynx harboring tonsillar tissue. This finding not only further sharpens our understanding of site-specific targeting by HPV, but may have practical implications regarding HPV testing and even the way the oral vault is oncologically compartmentalized to partition HPV-positive from HPV-negative cancers.
Rettig EM, Gooi Z, Bardin R, Bogale M, Rooper L, Acha E, Koch WM.
| DOI: 10.1177/2473974X18818415
Abstract Objective. Oral human papillomavirus (HPV) infection is the precursor for a growing subset of oropharyngeal squamous cell carcinomas (OPSCCs) in the developed world. This study was designed to characterize oral HPV infection and OPSCC in a region with high rates of HPV-driven cervical cancer. Study Design. Cross-sectional cohort study, retrospective case series. Setting. Northwest Cameroon referral hospital. Subjects and Methods. Individuals infected with human immunodeficiency virus attending an outpatient clinic were evaluated for oral HPV infection with oral swabs or rinses that were tested for 51 HPV types. HNSCCs diagnosed and/or treated at the same hospital from 2011 to 2017 were retrospectively reviewed to ascertain demographic and tumor characteristics, and available OPSCCs were tested for HPV. Results. The oral HPV infection study population comprised 101 participants. Most (69%) were female and neversmokers (84%). Participants had median 4 lifetime sexual partners (interquartile range, 3-7; range, 1-100). Five participants (5%) had oral HPV infection; one had 2 HPV types. HPV types detected were HPV68 (n = 2), HPV82 (n = 2), HPV32 (n = 1), and unknown (n = 1). No significant demographic or behavioral differences were detected among individuals with vs without oral HPV infection. OPSCCs comprised just 8% (n = 11) of 131 HNSCCs in the retrospective study population. Two of 7 OPSCCs were HPV positive. Conclusion. The low prevalence of OPSCC observed in northwest Cameroon together with the rarity of oral HPV infection suggests low rates of HPV-driven oropharyngeal carcinogenesis in the region. Future research should examine how geographic differences in oral HPV infection are influenced by cultural norms and affect HPV-OPSCC epidemiology
Bockmayr, M;Harnisch, K;Pohl, L;Schweizer, L;Mohme, T;Körner, M;Alawi, M;Suwala, A;Dorostkar, M;Monoranu, C;Hasselblatt, M;Wefers, A;Capper, D;Hench, J;Frank, S;Richardson, T;Tran, I;Liu, E;Snuderl, M;Engertsberger, L;Benesch, M;von Deimling, A;Obrecht, D;Mynarek, M;Rutkowski, S;Glatzel, M;Neumann, J;Schüller, U;
| DOI: 10.1093/neuonc/noac079.143
Myxopapillary ependymoma (MPE) is a heterogeneous disease regarding histopathology and outcome. The underlying molecular biology is poorly understood, and markers that reliably predict the patients’ clinical course are unknown. We assembled a cohort of 185 tumors classified as MPE based on DNA methylation from pediatric, adolescent, and adult patients. Methylation patterns, copy number profiles, and MGMT promoter methylation were analyzed for all tumors, 106 tumors were evaluated histomorphologically, and RNA sequencing was performed for 37 cases. Based on methylation profiling, we defined two subtypes MPE-A and MPEB, and explored associations with epidemiological, clinical, pathological, and molecular characteristics of these tumors. Tumors in the methylation class MPE were histologically diagnosed as WHO grade I (59%), WHO grade II (37%), or WHO grade III tumors (4%). 75/77 analyzed tumors expressed HOXB13, which is a diagnostic feature not detected in other spinal ependymal tumors. Based on DNA methylation, our series split into two subtypes. MPE-A occurred in younger patients (median age 27 vs. 45 years, p=7.3e-05). They were enriched with WHO grade I tumors and associated with papillary morphology and MGMT promoter hypermethylation (all p<0.001). MPE-B included most tumors initially diagnosed as WHO grade II and cases with tanycytic morphology. Copy number alterations were more common in MPE-A. RNA sequencing revealed an enrichment for extracellular matrix and immune system-related signatures in MPE-A. 15/30 MPE-A could not be totally resected compared to 1/58 MPE-B (p=6.3e-08), and progression-free survival was significantly better for MPE-B (p=3.4e-06, 10-year relapse rate 33% vs. 85%). We unraveled the morphological and clinical heterogeneity of MPE by identifying two molecularly distinct subtypes. These subtypes significantly differed in progression-free survival and will likely need different protocols for surveillance and treatment.
Broeckel, RM;Feldmann, F;McNally, KL;Chiramel, AI;Sturdevant, GL;Leung, JM;Hanley, PW;Lovaglio, J;Rosenke, R;Scott, DP;Saturday, G;Bouamr, F;Rasmussen, AL;Robertson, SJ;Best, SM;
PMID: 34855915 | DOI: 10.1371/journal.ppat.1009678
Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.
J Otolaryngol Head Neck Surg.
Brown RE, Naqvi S, McGuire MF, Buryanek J, Karni RJ.
PMID: 28818106 | DOI: 10.1186/s40463-017-0230-2
Abstract
BACKGROUND:
Human papillomavirus (HPV) has been identified as an etiopathogenetic factor in oropharyngeal squamous cell carcinoma. The HPV E6 and E7 oncogenes are instrumental in promoting proliferation and blocking differentiation leading to tumorigenesis. Although surgical intervention can remove such tumors, the potential for an etiologic field effect with recurrent disease is real. A downstream effector of E7 oncoprotein, enhancer of zeste homolog 2 (EZH2), is known to promote proliferation and to pose a block in differentiation and in turn, could lead to HPV-induced malignant transformation. However, the EZH2 pathway is amenable to low toxicity therapies designed to promotedifferentiation to a more benign state and prevent recurrent disease by inhibiting the incorporation of HPV into the genome. This is the first study using clinical specimens to demonstrate EZH2 protein expression in oropharyngeal carcinoma (OPC).
METHODS:
The study included eight patients with oropharyngeal carcinoma, confirmed p16INK4a- positive by immunohistochemistry (IHC). The tissue expression of E6/E7 messenger RNA (mRNA) was measured by RNAscope™ in-situ hybridization technology. Expression of EZH2, Ki-67, and mitotic indices were assessed by morphoproteomic analysis. Biomedical analytics expanded the results with data from Ingenuity Pathway Analysis (IPA) and KEGG databases to construct a molecular network pathway for further insights.
RESULTS:
Expression of E6 and E7 oncogenes in p16INK4a- positive oropharyngeal carcinoma was confirmed. EZH2 and its correlates, including elevated proliferation index (Ki-67) and mitotic progression were also present. Biomedical analytics validated the relationship between HPV- E6 and E7 and the expression of the EZH2 pathway.
CONCLUSION:
There is morphoproteomic and mRNA evidence of the association of p16INK4a-HPV infection with the E6 and E7 oncogenes and the expression of EZH2, Ki-67 and mitotic progression in oropharyngeal carcinoma. The molecular network biology was confirmed by biomedical analytics as consistent with published literature. This is significant because the biology lends itself to targeted therapeutic options using metformin, curcumin, celecoxib and sulforaphane as therapeutic strategies to prevent progression or recurrence of disease.
Am J Respir Crit Care Med. 2018 Dec 15.
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV.
PMID: 30554520 | DOI: 10.1164/rccm.201712-2410OC
Abstract RATIONALE: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. OBJECTIVES: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells or other cell types in lung tissue from subjects with pulmonary fibrosis compared with controls. METHODS: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data in using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. MEASUREMENTS AND MAIN RESULTS: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to non-overlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. CONCLUSIONS: We generated a single cell atlas of pulmonary fibrosis. Using this atlas we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
He, S;Bhatt, R;Brown, C;Brown, EA;Buhr, DL;Chantranuvatana, K;Danaher, P;Dunaway, D;Garrison, RG;Geiss, G;Gregory, MT;Hoang, ML;Khafizov, R;Killingbeck, EE;Kim, D;Kim, TK;Kim, Y;Klock, A;Korukonda, M;Kutchma, A;Lewis, ZR;Liang, Y;Nelson, JS;Ong, GT;Perillo, EP;Phan, JC;Phan-Everson, T;Piazza, E;Rane, T;Reitz, Z;Rhodes, M;Rosenbloom, A;Ross, D;Sato, H;Wardhani, AW;Williams-Wietzikoski, CA;Wu, L;Beechem, JM;
PMID: 36203011 | DOI: 10.1038/s41587-022-01483-z
Resolving the spatial distribution of RNA and protein in tissues at subcellular resolution is a challenge in the field of spatial biology. We describe spatial molecular imaging, a system that measures RNAs and proteins in intact biological samples at subcellular resolution by performing multiple cycles of nucleic acid hybridization of fluorescent molecular barcodes. We demonstrate that spatial molecular imaging has high sensitivity (one or two copies per cell) and very low error rate (0.0092 false calls per cell) and background (~0.04 counts per cell). The imaging system generates three-dimensional, super-resolution localization of analytes at ~2 million cells per sample. Cell segmentation is morphology based using antibodies, compatible with formalin-fixed, paraffin-embedded samples. We measured multiomic data (980 RNAs and 108 proteins) at subcellular resolution in formalin-fixed, paraffin-embedded tissues (nonsmall cell lung and breast cancer) and identified >18 distinct cell types, ten unique tumor microenvironments and 100 pairwise ligand-receptor interactions. Data on >800,000 single cells and ~260 million transcripts can be accessed at http://nanostring.com/CosMx-dataset .