Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (4)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (68) Apply HPV E6/E7 filter
  • HPV (18) Apply HPV filter
  • HPV-HR18 (14) Apply HPV-HR18 filter
  • TBD (12) Apply TBD filter
  • HPV18 (6) Apply HPV18 filter
  • 18 (5) Apply 18 filter
  • 31 (5) Apply 31 filter
  • HPV16 (4) Apply HPV16 filter
  • HPV16/18 (4) Apply HPV16/18 filter
  • MmuPV1 (4) Apply MmuPV1 filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • (-) Remove HPV HR18 filter HPV HR18 (4)
  • HPV E6 / E7 (4) Apply HPV E6 / E7 filter
  • 33 (4) Apply 33 filter
  • 35 (4) Apply 35 filter
  • 39 (4) Apply 39 filter
  • 45 (4) Apply 45 filter
  • 51 (4) Apply 51 filter
  • 52 (4) Apply 52 filter
  • 56 (4) Apply 56 filter
  • 58 (4) Apply 58 filter
  • 59 (4) Apply 59 filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • E7 (3) Apply E7 filter
  • 26 (3) Apply 26 filter
  • E6/E7 (3) Apply E6/E7 filter
  • HPV 16 (3) Apply HPV 16 filter
  • 53 (3) Apply 53 filter
  • 66 (3) Apply 66 filter
  • 68 (3) Apply 68 filter
  • 73 (3) Apply 73 filter
  • 82 (3) Apply 82 filter
  • HPV16 E6/E7 (2) Apply HPV16 E6/E7 filter
  • HPV- E6 / E7 (2) Apply HPV- E6 / E7 filter
  • HR-HPV (2) Apply HR-HPV filter
  • Wnt16 (1) Apply Wnt16 filter
  • Axin2 (1) Apply Axin2 filter
  • EBV (1) Apply EBV filter
  • HPV31 (1) Apply HPV31 filter
  • HPV33 (1) Apply HPV33 filter
  • HPV35 (1) Apply HPV35 filter
  • HPV52 (1) Apply HPV52 filter
  • HPV58 (1) Apply HPV58 filter
  • HPV-HR7 (1) Apply HPV-HR7 filter
  • CPV16-E6/E7 (1) Apply CPV16-E6/E7 filter
  • E6 (1) Apply E6 filter
  • HER2 (1) Apply HER2 filter
  • Cd207 (1) Apply Cd207 filter
  • Krt10 (1) Apply Krt10 filter
  • Fabp5 (1) Apply Fabp5 filter

Product

  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • (-) Remove HPV filter HPV (4)
  • Cancer (4) Apply Cancer filter
  • Infectious Disease (2) Apply Infectious Disease filter

Category

  • Publications (4) Apply Publications filter
Anaplasia and multinucleation in metastases of oropharyngeal squamous cell carcinoma is associated with poorer outcomes

Journal of the American Society of Cytopathology

2022 Apr 01

Jager, L;Felicelli, C;Alexiev, B;Samant, S;Johnson, D;
| DOI: 10.1016/j.jasc.2022.03.004

Introduction The presence of tumor cell anaplasia and multinucleation (A/M) in oropharyngeal squamous cell carcinoma (OPSCC) has recently been found to be associated with increased disease recurrence and poorer disease-specific survival, regardless of HPV status. We aim to study the detection of A/M in cytology specimens. Materials and Methods A comprehensive data search for all patients with OPSCC diagnosed and treated at Northwestern Memorial Hospital between January 2013 and April 2020. All cytology and histopathologic slides were reviewed for the presence of A/M in patients with both surgical resection or biopsy specimens and fine needle aspiration cytology of a metastatic site. Results 87 patients were identified with both surgical and cytology specimens available for review. A/M was identified in 21 cytology specimens and 14 surgical specimens. Cytologic A/M was seen in 11 of the 14 patients (78.5%) with corresponding histologic A/M and in 10 of the 73 patients (13.7%) without histologic A/M. Disease-specific survival was significantly worse in patients with cytologic A/M regardless of the presence of histologic A/M (P = 0.0064) and in patients with cytologic A/M only (P = 0.0271). In patients with p16 positive/HPV-associated carcinoma, disease-specific survival was significantly worse in patients with both histologic and cytologic A/M (P = 0.0305). Conclusions A/M can be reliably identified in cytology specimens among all the various stains and preparations irrespective of primary tumor histology. Identification of A/M on cytology specimens may indicate more aggressive clinical behavior and help guide patient management.
Co-expression of SOX2 and HR-HPV RISH predicts poor prognosis in small cell neuroendocrine carcinoma of the uterine cervix

BMC cancer

2021 Mar 31

Zhang, SW;Luo, RZ;Sun, XY;Yang, X;Yang, HX;Xiong, SP;Liu, LL;
PMID: 33789601 | DOI: 10.1186/s12885-021-08059-1

Small cell neuroendocrine carcinoma of the uterine cervix (SCNEC) is a rare cancer involving the human papilloma virus (HPV), and has few available treatments. The present work aimed to assess the feasibility of SOX2 and HPV statuses as predictive indicators of SCNEC prognosis. The associations of SOX2 and/or high-risk (HR)-HPV RNA in situ hybridization (RISH) levels with clinicopathological characteristics and prognostic outcomes for 88 neuroendocrine carcinoma (NEC) cases were analyzed. Among these patients with SCNEC, SOX2, P16INK4A and HR-HPV RISH expression and SOX2/HR-HPV RISH co-expression were detected in 68(77.3%), 76(86.4%), 73(83.0%), and 48(54.5%), respectively. SOX2-positive and HR-HPV RISH-positive SCNEC cases were associated with poorer overall survival (OS, P = 0.0170, P = 0.0451) and disease-free survival (DFS, P = 0.0334, P = 0.0309) compared with those expressing low SOX2 and negative HR-HPV RISH. Alternatively, univariate analysis revealed that SOX2 and HR-HPV RISH expression, either separately or in combination, predicted the poor prognosis of SCNEC patients. Multivariate analysis revealed that the co-expression of SOX2 with HR-HPV RISH may be an independent factor of OS [hazard ratio = 3.597; 95% confidence interval (CI): 1.085-11.928; P = 0.036] and DFS [hazard ratio = 2.880; 95% CI: 1.199-6.919; P = 0.018] prediction in SCNEC. Overall, the results of the present study suggest that the co-expression of SOX2 with HR-HPV RISH in SCNEC may represent a specific subgroup exhibiting remarkably poorer prognostic outcomes compared with the expression of any one marker alone.
HPV RNA in situ hybridization can inform cervical cytology-histology correlation.

Cancer Cytopathol.

2018 Jul 05

Coppock JD, Willis BC, Stoler MH, Mills AM.
PMID: 29975461 | DOI: 10.1002/cncy.22027

Abstract

BACKGROUND:

In situ hybridization for human papillomavirus (HPV) messenger RNA (HPV RNA ISH) recently was introduced as an ancillary tool in the diagnosis of cervical squamous intraepithelial lesions, and can aid in the distinction between low-grade squamous intraepithelial lesions (LSILs) versus reactive/negative biopsies. Prior work has shown that up to one-half of cases originally diagnosed as LSIL are reclassified as negative/reactive by expert consensus review of morphology, and negative HPV RNA ISH results most often correlate with an expert diagnosis of negative/reactive. Given that LSIL overdiagnoses on biopsy may result in the erroneous clinical impression that a cervical lesion has been sampled appropriately, the authors proposed that HPV RNA ISH can inform cytology-histology correlation for challenging LSIL biopsies.

METHODS:

A total of 92 cervical biopsies originally diagnosed as LSIL were reviewed by 3 gynecologic pathologists and reclassified based on consensus opinion of morphology. ISH was performed for high-risk and low-risk HPV E6/E7 mRNA. Prior/concurrent cytology results were collected.

RESULTS:

Based on expert consensus morphologic review, 49% of biopsies (45 of 92 biopsies) originally diagnosed as LSIL were reclassified as negative, 6.5% (6 of 92 biopsies) were reclassified as high-grade squamous intraepithelial lesion, and 44.5% (41 of 92 biopsies) were maintained as LSIL. The majority of LSIL biopsies reclassified as negative (80%; 36 of 45 biopsies) were HPV RNA negative, whereas 93% of LSIL biopsies (39 of 41 biopsies) and 100% of high-grade squamous intraepithelial lesion biopsies were HPV RNA positive.

CONCLUSIONS:

LSIL often is overdiagnosed by morphology on biopsy, potentially leading to the false impression that a lesion identified on cytology has been sampled. Performing RNA ISH on biopsies decreases histologic LSIL overdiagnosis, and potentially can prompt further sampling when there is cytology-histology discordance.

Cytopathologic characteristics of HPV‐related small cell carcinoma of the oropharynx

Cancer Cytopathol.

2018 Nov 23

Allison DB, Rooper LM, Mustafa S, Maleki Z, Wakely PE Jr, Ali SZ.
PMID: 30468701 | DOI: 10.1002/cncy.22078

Abstract

BACKGROUND:

Human papillomavirus (HPV)-related squamous cell carcinoma (SqCC) of the oropharynx is an epidemiologically and clinically distinct form of SqCC that is associated with an improved prognosis. However, HPV-related small cell carcinoma of the oropharynx is a rare and newly described variant that is associated with aggressive clinical behavior and poor outcomes. To date, fewer than 2 dozen reports of this entity exist in the literature, and there is no discussion of cytopathologic features. This article reports 6 cases and discusses the salient cytomorphologic findings, ancillary studies, and challenges when this entity is encountered.

METHODS:

Anatomic pathology archives were searched to identify patients with a diagnosis of HPV-related small cell carcinoma of the oropharynx. Medical records were reviewed to document the following: age, sex, smoking status, other relevant clinical history, primary location, treatment, and clinical outcome. Both p16 and high-risk HPV in situ hybridization (ISH) studies were positive in at least 1 specimen from each patient. The pathologic diagnoses, cytomorphologic characteristics, immunocytochemical stains, and HPV ISH studies were reviewed and recorded for all available cases.

RESULTS:

Six patients with 11 cytopathology specimens of HPV-related small cell carcinoma of the oropharynx were identified. The mean age was 61.3 years, and all patients died with widely metastatic disease (mean, 23 months; range, 12-48 months). Mixed small cell carcinoma and SqCC components were present in half of the cases.

CONCLUSIONS:

The identification of a small cell component can be reliably performed with cytology preparations and is crucial because this (and not the HPV status) determines the prognosis.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?