Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (5)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (28) Apply SARS-CoV-2 filter
  • Lgr5 (26) Apply Lgr5 filter
  • Axin2 (24) Apply Axin2 filter
  • ZIKV (20) Apply ZIKV filter
  • V-nCoV2019-S (11) Apply V-nCoV2019-S filter
  • GLI1 (9) Apply GLI1 filter
  • Wnt5a (8) Apply Wnt5a filter
  • Bmp4 (7) Apply Bmp4 filter
  • HIV (7) Apply HIV filter
  • Wnt10a (6) Apply Wnt10a filter
  • Wnt10b (6) Apply Wnt10b filter
  • Wnt7b (6) Apply Wnt7b filter
  • COL1A1 (6) Apply COL1A1 filter
  • Dkk1 (6) Apply Dkk1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Wnt3a (6) Apply Wnt3a filter
  • TGFB1 (5) Apply TGFB1 filter
  • Wnt1 (5) Apply Wnt1 filter
  • Wnt4 (5) Apply Wnt4 filter
  • Ptch1 (5) Apply Ptch1 filter
  • FGFR2 (5) Apply FGFR2 filter
  • Wnt2b (5) Apply Wnt2b filter
  • Wnt5b (5) Apply Wnt5b filter
  • Vegfa (5) Apply Vegfa filter
  • IL-10 (5) Apply IL-10 filter
  • Bmp2 (5) Apply Bmp2 filter
  • WNT2 (5) Apply WNT2 filter
  • Sfrp2 (5) Apply Sfrp2 filter
  • Wnt3 (5) Apply Wnt3 filter
  • OLFM4 (5) Apply OLFM4 filter
  • SARS-CoV-2  (5) Apply SARS-CoV-2  filter
  • Dkk3 (4) Apply Dkk3 filter
  • Wnt16 (4) Apply Wnt16 filter
  • Wnt7a (4) Apply Wnt7a filter
  • Fgfr3 (4) Apply Fgfr3 filter
  • Sox9 (4) Apply Sox9 filter
  • IL17A (4) Apply IL17A filter
  • FGFR1 (4) Apply FGFR1 filter
  • Wnt11 (4) Apply Wnt11 filter
  • Wnt8a (4) Apply Wnt8a filter
  • Wnt8b (4) Apply Wnt8b filter
  • Wnt9a (4) Apply Wnt9a filter
  • Wnt9b (4) Apply Wnt9b filter
  • SHH (4) Apply SHH filter
  • Col2a1 (4) Apply Col2a1 filter
  • (-) Remove CXCL12 filter CXCL12 (4)
  • Adamts18 (4) Apply Adamts18 filter
  • Ackr2 (4) Apply Ackr2 filter
  • EBOV (4) Apply EBOV filter
  • Wnt6 (3) Apply Wnt6 filter

Product

  • (-) Remove RNAscope 2.5 HD Red assay filter RNAscope 2.5 HD Red assay (5)

Research area

  • Cancer (3) Apply Cancer filter
  • HPV (1) Apply HPV filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammation (1) Apply Inflammation filter
  • Juvenile Polyposis Syndrome (1) Apply Juvenile Polyposis Syndrome filter
  • Other: Bone (1) Apply Other: Bone filter

Category

  • Publications (5) Apply Publications filter
Loss of bone morphogenetic protein signaling in fibroblasts results in CXCL12-driven serrated polyp development

Journal of gastroenterology

2022 Nov 03

Ouahoud, S;Westendorp, BF;Voorneveld, PW;Abudukelimu, S;Koelink, PJ;Pascual Garcia, E;Buuren, JFI;Harryvan, TJ;Lenos, KJ;van Wezel, T;Offerhaus, JA;Fariña-Sarasqueta, A;Crobach, S;Slingerland, M;Hardwick, JCH;Hawinkels, LJAC;
PMID: 36326956 | DOI: 10.1007/s00535-022-01928-x

Mutations in Bone Morphogenetic Protein (BMP) Receptor (BMPR)1A and SMAD4 are detected in 50% of juvenile polyposis syndrome (JPS) patients, who develop stroma-rich hamartomatous polyps. The established role of stromal cells in regulating BMP activity in the intestine implies a role for stromal cells in polyp development. We used conditional Cre-LoxP mice to investigate how specific loss of BMPR1A in endothelial cells, fibroblasts, or myofibroblasts/smooth muscle cells affects intestinal homeostasis. Selective loss of BMPR1A in fibroblasts causes severe histological changes in the intestines with a significant increase in stromal cell content and epithelial cell hyperproliferation, leading to numerous serrated polyps. This phenotype suggests that crucial changes occur in the fibroblast secretome that influences polyp development. Analyses of publicly available RNA expression databases identified CXCL12 as a potential candidate. RNAscope in situ hybridization showed an evident increase of Cxcl12-expressing fibroblasts. In vitro, stimulation of fibroblasts with BMPs resulted in downregulation of CXCL12, while inhibition of the BMP pathway resulted in gradual upregulation of CXCL12 over time. Moreover, neutralization of CXCL12 in vivo in the fibroblast-specific BMPR1A KO mice resulted in a significant decrease in polyp formation. Finally, in CRC patient specimens, mRNA-expression data showed that patients with high GREMLIN1 and CXCL12 expression had a significantly poorer overall survival. Significantly higher GREMLIN1, NOGGIN, and CXCL12 expression were detected in the Consensus Molecular Subtype 4 (CMS4) colorectal cancers, which are thought to arise from serrated polyps. Taken together, these data imply that fibroblast-specific BMP signaling-CXCL12 interaction could have a role in the etiology of serrated polyp formation.
miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers

Nat. Commun.

2018 Mar 13

Givel AM, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, Magagna I, Gentric G, Costa A, Bonneau C, Mieulet V, Vincent-Salomon A, Mechta-Grigoriou F.
PMID: - | DOI: 10.1038/s41467-018-03348-z

High-grade serous ovarian cancers (HGSOC) have been subdivided into molecular subtypes. The mesenchymal HGSOC subgroup, defined by stromal-related gene signatures, is invariably associated with poor patient survival. We demonstrate that stroma exerts a key function in mesenchymal HGSOC. We highlight stromal heterogeneity in HGSOC by identifying four subsets of carcinoma-associated fibroblasts (CAF-S1-4). Mesenchymal HGSOC show high content in CAF-S1 fibroblasts, which exhibit immunosuppressive functions by increasing attraction, survival, and differentiation of CD25+FOXP3+ T lymphocytes. The beta isoform of the CXCL12 chemokine (CXCL12β) specifically accumulates in the immunosuppressive CAF-S1 subset through a miR-141/200a dependent-mechanism. Moreover, CXCL12β expression in CAF-S1 cells plays a crucial role in CAF-S1 immunosuppressive activity and is a reliable prognosis factor in HGSOC, in contrast to CXCL12α. Thus, our data highlight the differential regulation of the CXCL12α and CXCL12β isoforms in HGSOC, and reveal a CXCL12β-associated stromal heterogeneity and immunosuppressive environment in mesenchymal HGSOC.

Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease

Cell

2018 Sep 27

Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, Sharma E, Wills Q, Bowden R, Richter FC, Ahern D, Puri KD, Henault J, Gervais F, Koohy H, Simmons A.
PMID: - | DOI: 10.1016/j.cell.2018.08.067

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cellfunction. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.

Survival Rates for Patients With Barrett High-grade Dysplasia and Esophageal Adenocarcinoma With or Without Human Papillomavirus Infection

JAMA Network Open

2018 Aug 03

Rajendra S, Xuan W, Merrett N, Sharma P, Sharma P, Pavey D, Yang T, Santos LD, Sharaiha O, Pande G, Peter Cosman P, Wu X, Wang B.
PMID: - | DOI: 10.1001/jamanetworkopen.2018.1054


Abstract

Importance  
High-risk human papillomavirus (HPV) has been associated with Barrett dysplasia and esophageal adenocarcinoma. Nevertheless, the prognostic significance of esophageal tumor HPV status is unknown.

Objective  
To determine the association between HPV infection and related biomarkers in high-grade dysplasia or esophageal adenocarcinoma and survival.

Design, Setting, and Participants  
Retrospective case-control study. The hypothesis was that HPV-associated esophageal tumors would show a favorable prognosis (as in viral-positive head and neck cancers). Pretreatment biopsies were used for HPV DNA determination via polymerase chain reaction, in situ hybridization for E6 and E7 messenger RNA (mRNA), and immunohistochemistry for the proteins p16INK4A and p53. Sequencing of TP53 was also undertaken. The study took place at secondary and tertiary referral centers, with 151 patients assessed for eligibility and 9 excluded. The study period was from December 1, 2002, to November 28, 2017.

Main Outcomes and Measures  
Disease-free survival (DFS) and overall survival (OS).

Results  
Among 142 patients with high-grade dysplasia or esophageal adenocarcinoma (126 [88.7%] male; mean [SD] age, 66.0 [12.1] years; 142 [100%] white), 37 were HPV positive and 105 were HPV negative. Patients who were HPV positive mostly had high p16INK4A expression, low p53 expression, and wild-type TP53. There were more Tis, T1, and T2 tumors in HPV-positive patients compared with HPV-negative patients (75.7% vs 54.3%; difference, 21.4%; 95% CI, 4.6%-38.2%; P = .02). Mean DFS was superior in the HPV-positive group (40.3 vs 24.1 months; difference, 16.2 months; 95% CI, 5.7-26.8; P = .003) as was OS (43.7 vs 29.8 months; difference, 13.9 months; 95% CI, 3.6-24.3; P = .009). Recurrence or progression was reduced in the HPV-positive cohort (24.3% vs 58.1%; difference, −33.8%; 95% CI, −50.5% to −17.0%; P < .001) as was distant metastasis (8.1% vs 27.6%; difference, −19.5%; 95% CI, −31.8% to −7.2%; P = .02) and death from esophageal adenocarcinoma (13.5% vs 36.2%; difference, −22.7%; 95% CI, −37.0% to −8.3%; P = .01). Positive results for HPV and transcriptionally active virus were both associated with a superior DFS (hazard ratio [HR], 0.33; 95% CI, 0.16-0.67; P = .002 and HR, 0.44; 95% CI, 0.22-0.88; P = .02, respectively [log-rank test]). Positivity for E6 and E7 mRNA, high p16INK4Aexpression, and low p53 expression were not associated with improved DFS. On multivariate analysis, superior DFS was demonstrated for HPV (HR, 0.39; 95% CI, 0.18-0.85; P = .02), biologically active virus (HR, 0.36; 95% CI, 0.15-0.86; P = .02), E6 and E7 mRNA (HR, 0.36; 95% CI, 0.14-0.96; P = .04), and high p16 expression (HR, 0.49; 95% CI, 0.27-0.89; P = .02).

Conclusions and Relevance  
Barrett high-grade dysplasia and esophageal adenocarcinoma in patients who are positive for HPV are distinct biological entities with a favorable prognosis compared with viral-negative esophageal tumors. Confirmation of these findings in larger cohorts with more advanced disease could present an opportunity for treatment de-escalation in the hope of reducing toxic effects without deleteriously affecting survival.

T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control

Nature immunology

2023 Feb 27

Steele, MM;Jaiswal, A;Delclaux, I;Dryg, ID;Murugan, D;Femel, J;Son, S;du Bois, H;Hill, C;Leachman, SA;Chang, YH;Coussens, LM;Anandasabapathy, N;Lund, AW;
PMID: 36849745 | DOI: 10.1038/s41590-023-01443-y

Antigen-specific CD8+ T cell accumulation in tumors is a prerequisite for effective immunotherapy, and yet the mechanisms of lymphocyte transit are not well defined. Here we show that tumor-associated lymphatic vessels control T cell exit from tumors via the chemokine CXCL12, and intratumoral antigen encounter tunes CXCR4 expression by effector CD8+ T cells. Only high-affinity antigen downregulates CXCR4 and upregulates the CXCL12 decoy receptor, ACKR3, thereby reducing CXCL12 sensitivity and promoting T cell retention. A diverse repertoire of functional tumor-specific CD8+ T cells, therefore, exit the tumor, which limits the pool of CD8+ T cells available to exert tumor control. CXCR4 inhibition or loss of lymphatic-specific CXCL12 boosts T cell retention and enhances tumor control. These data indicate that strategies to limit T cell egress might be an approach to boost the quantity and quality of intratumoral T cells and thereby response to immunotherapy.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?