ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
JAMA Network Open
2018 Aug 03
Rajendra S, Xuan W, Merrett N, Sharma P, Sharma P, Pavey D, Yang T, Santos LD, Sharaiha O, Pande G, Peter Cosman P, Wu X, Wang B.
PMID: - | DOI: 10.1001/jamanetworkopen.2018.1054
Abstract
Importance
High-risk human papillomavirus (HPV) has been associated with Barrett dysplasia and esophageal adenocarcinoma. Nevertheless, the prognostic significance of esophageal tumor HPV status is unknown.
Objective
To determine the association between HPV infection and related biomarkers in high-grade dysplasia or esophageal adenocarcinoma and survival.
Design, Setting, and Participants
Retrospective case-control study. The hypothesis was that HPV-associated esophageal tumors would show a favorable prognosis (as in viral-positive head and neck cancers). Pretreatment biopsies were used for HPV DNA determination via polymerase chain reaction, in situ hybridization for E6 and E7 messenger RNA (mRNA), and immunohistochemistry for the proteins p16INK4A and p53. Sequencing of TP53 was also undertaken. The study took place at secondary and tertiary referral centers, with 151 patients assessed for eligibility and 9 excluded. The study period was from December 1, 2002, to November 28, 2017.
Main Outcomes and Measures
Disease-free survival (DFS) and overall survival (OS).
Results
Among 142 patients with high-grade dysplasia or esophageal adenocarcinoma (126 [88.7%] male; mean [SD] age, 66.0 [12.1] years; 142 [100%] white), 37 were HPV positive and 105 were HPV negative. Patients who were HPV positive mostly had high p16INK4A expression, low p53 expression, and wild-type TP53. There were more Tis, T1, and T2 tumors in HPV-positive patients compared with HPV-negative patients (75.7% vs 54.3%; difference, 21.4%; 95% CI, 4.6%-38.2%; P = .02). Mean DFS was superior in the HPV-positive group (40.3 vs 24.1 months; difference, 16.2 months; 95% CI, 5.7-26.8; P = .003) as was OS (43.7 vs 29.8 months; difference, 13.9 months; 95% CI, 3.6-24.3; P = .009). Recurrence or progression was reduced in the HPV-positive cohort (24.3% vs 58.1%; difference, −33.8%; 95% CI, −50.5% to −17.0%; P < .001) as was distant metastasis (8.1% vs 27.6%; difference, −19.5%; 95% CI, −31.8% to −7.2%; P = .02) and death from esophageal adenocarcinoma (13.5% vs 36.2%; difference, −22.7%; 95% CI, −37.0% to −8.3%; P = .01). Positive results for HPV and transcriptionally active virus were both associated with a superior DFS (hazard ratio [HR], 0.33; 95% CI, 0.16-0.67; P = .002 and HR, 0.44; 95% CI, 0.22-0.88; P = .02, respectively [log-rank test]). Positivity for E6 and E7 mRNA, high p16INK4Aexpression, and low p53 expression were not associated with improved DFS. On multivariate analysis, superior DFS was demonstrated for HPV (HR, 0.39; 95% CI, 0.18-0.85; P = .02), biologically active virus (HR, 0.36; 95% CI, 0.15-0.86; P = .02), E6 and E7 mRNA (HR, 0.36; 95% CI, 0.14-0.96; P = .04), and high p16 expression (HR, 0.49; 95% CI, 0.27-0.89; P = .02).
Conclusions and Relevance
Barrett high-grade dysplasia and esophageal adenocarcinoma in patients who are positive for HPV are distinct biological entities with a favorable prognosis compared with viral-negative esophageal tumors. Confirmation of these findings in larger cohorts with more advanced disease could present an opportunity for treatment de-escalation in the hope of reducing toxic effects without deleteriously affecting survival.
BMC Biol.
2019 Apr 11
Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, Yuan W, Kimber M, Qi Y, Wang Q, Wannemuehler M, Ellinwood NM, Snella E, Martin M, Skala M, Meyerholz D, Estes M, Fernandez-Zapico ME, Jergens AE, Mochel JP, Allenspach K.
PMID: 30975131 | DOI: 10.1186/s12915-019-0652-6
Abstract
BACKGROUND:
Large animal models, such as the dog, are increasingly being used for studying diseases including gastrointestinal (GI) disorders. Dogs share similar environmental, genomic, anatomical, and intestinal physiologic features with humans. To bridge the gap between commonly used animal models, such as rodents, and humans, and expand the translational potential of the dog model, we developed a three-dimensional (3D) canine GI organoid (enteroid and colonoid) system. Organoids have recently gained interest in translational research as this model system better recapitulates the physiological and molecular features of the tissue environment in comparison with two-dimensional cultures.
RESULTS:
Organoids were derived from tissue of more than 40 healthy dogs and dogs with GI conditions, including inflammatory bowel disease (IBD) and intestinal carcinomas. Adult intestinal stem cells (ISC) were isolated from whole jejunal tissue as well as endoscopically obtained duodenal, ileal, and colonic biopsy samples using an optimized culture protocol. Intestinal organoids were comprehensively characterized using histology, immunohistochemistry, RNA in situ hybridization, and transmission electron microscopy, to determine the extent to which they recapitulated the in vivo tissue characteristics. Physiological relevance of the enteroid system was defined using functional assays such as optical metabolic imaging (OMI), the cystic fibrosis transmembrane conductance regulator (CFTR) function assay, and Exosome-Like Vesicles (EV) uptake assay, as a basis for wider applications of this technology in basic, preclinical and translational GI research. We have furthermore created a collection of cryopreserved organoids to facilitate future research.
CONCLUSIONS:
We establish the canine GI organoid systems as a model to study naturally occurring intestinal diseases in dogs and humans, and that can be used for toxicology studies, for analysis of host-pathogen interactions, and for other translational applications.
Bone Research
2018 Apr 06
Zuo C, Wang L, Kamalesh RM, Bowen Me, Moore DC, Dooner MS, Reginato AM, Wu Q, Schorl C, Song Y, Warman ML, Neel BG, Ehrlich MG, Yang W.
PMID: - | DOI: 10.1038/s41413-018-0013-z
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor (OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2 (encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using “Cre-loxP”-mediated gene excision. SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, qRT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.
Developmental cell
2022 Jun 07
Hein, RFC;Wu, JH;Holloway, EM;Frum, T;Conchola, AS;Tsai, YH;Wu, A;Fine, AS;Miller, AJ;Szenker-Ravi, E;Yan, KS;Kuo, CJ;Glass, I;Reversade, B;Spence, JR;
PMID: 35679862 | DOI: 10.1016/j.devcel.2022.05.010
iScience
2021 Sep 01
Liu, S;Qin, D;Yan, Y;Wu, J;Meng, L;Huang, W;Wang, L;Chen, X;Zhang, L;
| DOI: 10.1016/j.isci.2021.103003
Chinese journal of pathology
2019 Feb 02
Zhao YH, Bai YP, Mao ML, Zhang H, Zhao XL, Yang DM, Wan HF, Liu HG.
PMID: 30695865 | DOI: 10.3760/cma.j.issn.0529-5807.2019.02.010
Objective: To observe the clinicopathologic features of oropharyngeal squamous cell carcinoma associated with human papilloma virus (OPSCC-HPV) and discuss the role and value of different in situ hybridization (ISH) detection methods for HPV in pathologic diagnosis. Methods: Fifteen cases of OPSCC-HPV were collected from Department of Pathology, Beijing Tongren Hospital, Capital Medical University from January 2016 to August 2018. These cases were diagnosed in accordance with the WHO classification of head and neck tumors. The histopathologic features and the clinicopathologic data were retrospectively analyzed. Immunohistochemistry (two-step EnVision method) was done to evaluate the expression of p16, Ki-67 and p53. ISH was used to detect HPV DNA (6/11 and 16/18). RNAscope technology was used to evaluate the presence of HPV mRNAs (16 and 18). Results: The mean age for the 15 patients (8 males, 7 females) was 47 years (range from 30 to 69 years). OPSCC-HPV typically presentedat an advanced clinical stage, six patients had cervical lymphadenopathy (large and cystic), seven had tonsillar swelling, one had tumor at base of tongue, and one had odynophagia. Microscopically the tumors exhibited distinctive non-keratinizing squamous cell carcinoma morphology. Cervical nodal metastases were large and cystic, with thickening of lymph node capsules. OPSCC-HPV raised from crypt epithelium and extended beneath the tonsillar surface epithelial lining as nests and lobules, often with central necrosis. Tumor cells displayed a high N: C ratio, and high mitotic and apoptotic rates. Tumor nests are often embedded within lymphoid stroma, and may be infiltrated by lymphoid cells.Fifteen cases (15/15) were strongly positive for p16; Ki-67 index were 60%-90%; they were focally positive or negative for p53. Ten cases (10/10) were negative for HPV 6/11 DNA, and one case(1/10) was focally positive for HPV16/18 DNA. Eleven cases (11/11) were strongly positive for HPV16 mRNA, one case was focally positive for HPV18 mRNA. Conclusions: OPSCC-HPV is a pathologically and clinically distinct form of head and neck squamous cell carcinoma. OPSCC-HPV is associated with high-risk HPV (type 16) in all cases. Detection of high-risk HPV16 mRNA by RNAscope is of great significance in the final diagnosis and pathogen identification.
Stem Cell Reports.
2017 Jul 04
Li B, Dorrell C, Canaday PS, Pelz C, Haft A, Finegold M, Grompe M.
PMID: 28689996 | DOI: 10.1016/j.stemcr.2017.06.003
The biliary system plays an important role in several acquired and genetic disorders of the liver. We have previously shown that biliary duct epithelium contains cells giving rise to proliferative Lgr5+ organoids in vitro. However, it remained unknown whether all biliary cells or only a specific subset had this clonogenic activity. The cell surface protease ST14 was identified as a positive marker for the clonogenic subset of cholangiocytes and was used to separate clonogenic and non-clonogenic duct cells by fluorescence-activated cell sorting. Only ST14hi duct cells had the ability to generate organoids that could be serially passaged. The gene expression profiles of clonogenic and non-clonogenic duct cells were similar, but several hundred genes were differentially expressed. RNA fluorescence in situ hybridization showed that clonogenic duct cells are interspersed among regular biliary epithelium at a ∼1:3 ratio. We conclude that adult murine cholangiocytes can be subdivided into two populations differing in their proliferative capacity.
Cell stem cell
2022 Jun 15
Niec, RE;Chu, T;Schernthanner, M;Gur-Cohen, S;Hidalgo, L;Pasolli, HA;Luckett, KA;Wang, Z;Bhalla, SR;Cambuli, F;Kataru, RP;Ganesh, K;Mehrara, BJ;Pe'er, D;Fuchs, E;
PMID: 35728595 | DOI: 10.1016/j.stem.2022.05.007
The Journal of biological chemistry
2023 May 10
Matsushita, Y;Manabe, H;Ohyama, T;Nakamura, S;Nagata, M;Ono, W;Ono, N;
PMID: 37172728 | DOI: 10.1016/j.jbc.2023.104805
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com